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Abstract Decision rules provide a flexible toolbox for solving computationally
demanding, multistage adaptive optimization problems. There is a plethora of real-
valued decision rules that are highly scalable and achieve good quality solutions. On
the other hand, existing binary decision rule structures tend to produce good quality
solutions at the expense of limited scalability and are typically confined to worst-case
optimization problems. To address these issues, we first propose a linearly parame-
terised binary decision rule structure and derive the exact reformulation of the decision
rule problem. In the cases where the resulting optimization problem grows exponen-
tially with respect to the problem data, we provide a systematic methodology that
trades-off scalability and optimality, resulting to practical binary decision rules. We
also apply the proposed binary decision rules to the class of problems with random-
recourse and show that they share similar complexity as the fixed-recourse problems.
Our numerical results demonstrate the effectiveness of the proposed binary decision
rules and show that they are (i) highly scalable and (ii) provide high quality solutions.
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1 Introduction

In this paper, we use robust optimization techniques to develop efficient solution
methods for the class of multistage adaptive mixed-integer optimization problems.
The one-stage variant of the problem can be described as follows: Given matrices
A ∈ R

m×k, B ∈ R
m×q , C ∈ R

n×k, D ∈ R
q×k, H ∈ R

m×k and a probability
measure Pξ supported on set Ξ for the uncertain vector ξ ∈ R

k , we are interested in
choosing n real-valued functions x(·) ∈ Rk,n and q binary functions y(·) ∈ Bk,q in
order to solve:

minimize Eξ

(
(Cξ)�x(ξ) + (Dξ)� y(ξ)

)

subject to x(·) ∈ Rk,n, y(·) ∈ Bk,q ,

Ax(ξ) + B y(ξ) ≤ Hξ ,

}
∀ξ ∈ Ξ.

(1.1)

Here,Rk,n denotes the space of all real-valued functions from R
k to Rn , and Bk,q the

space of binary functions from R
k to {0, 1}q . Problem (1.1) has a long history both

from the theoretical and practical point of view, with applications in many fields such
as engineering [22,32], operations management [5,30], and finance [13,14]. From a
theoretical point of view,Dyer andStougie [18] have shown that computing the optimal
solution for the class of Problems (1.1) involving only real-valued decisions, is #P-
hard, while their multistage variants are believed to be “computationally intractable
already when medium-accuracy solutions are sought” [31]. In view of these complex-
ity results, there is a need for computationally efficient solution methods that possibly
sacrifice optimality for tractability. To quote Shapiro and Nemirovski [31], “. . . in
actual applications it is better to pose a modest and achievable goal rather than an
ambitious goal which we do not know how to achieve”.

A drastic simplification that achieves this goal is to use decision rules. This func-
tional approximation restricts the infinite space of the adaptive decisions x(·) and
y(·) to admit pre-specified structures, allowing the use of numerical solution methods.
Decisions rules for real-valued functions have been used since 1974 [19]. Neverthe-
less, their potential was not fully exploited until recently when new advances in robust
optimization provided the tools to reformulate the decision rule problem as tractable
convex optimization problems [4,7]. Robust optimization techniques were first used
by Ben-Tal et al. [6] to reformulate the linear decision rule problem. In this work,
real-valued functions are parameterised as linear function of the random variables,
i.e., x(ξ) = x�ξ for x ∈ R

k . The simple structure of linear decision rules offers the
scalability needed to tackle multistage adaptive problems. Even though linear deci-
sion rules are known to be optimal in a number of problem instances [1,11,23], their
simple structure generically sacrifices a significant amount of optimality in return for
scalability. To gain back some degree of optimality, attention was focused on the con-
struction of non-linear decision rules. Inspired by the linear decision rule structure, the
real-valued adaptive decisions are parameterised as x(ξ) = x�L(ξ), x ∈ R

k′
, where

L : Rk → R
k′
, k′ ≥ k, is a non-linear operator defining the structure of the decision

rule. This approximation provides significant improvements in solution quality, while
retaining in large parts the favourable scalability properties of the linear decision rules.
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Table 1 The table summarizes the literature of real-valued decision rule structures for which the resulting
semi-infinite optimization problem can be reformulated exactly using robust optimization techniques

Real-valued decision rule structures
x(ξ) = x�L(ξ) Computational burden Reference

Linear LOP [6,22,27,32]

Piecewise linear LOP [16,17,20,21]

Multilinear LOP [20]

Quadratic SOCOP [3,20]

Power, monomial, inverse monomial SOCOP [20]

Polynomial SDOP [2,12]

The computation burden refers to the structure of the resulting optimization problems for the case where
the uncertainty set is described by a polyhedral set, with Linear Optimization Problems denoted by LOP,
Second-Order Cone Optimization Problems denoted by SOCOP, and Semi-Definite Optimization Problems
denoted by SDOP

Table 1 summarizes non-linear decision rules from the literature that are parameterized
as x(ξ) = x�L(ξ), together with the complexity of the induced convex optimization
problems. A notable exception of real-valued decision rules that are alternatively
parameterized as x(ξ) = max{x�

1 ξ , . . . , x�
Pξ}−max{x�

1 ξ , . . . , x�
Pξ}, x p, x p ∈ R

k ,
is proposed by Bertsimas and Georghiou [10] in the framework of worst-case adaptive
optimization. This structure offers near-optimal designs but requires the solution of
mixed-integer optimization problems.

In contrast to the plethora of decision rule structures for real-valued decisions,
the literature on discrete decision rules is somewhat limited. There are, however,
three notable exceptions that deal with the case of worst-case adaptive optimization.
The first one is the work of Bertsimas and Caramanis [8], where integer decision
rules are parameterized as y(ξ) = y�	ξ
, y ∈ Z

k , where 	·
 is the component-
wise ceiling function. In this work, the resulting semi-infinite optimization problem is
further approximated and solved using a randomized algorithm [15], providing only
probabilistic guarantees on the feasibility of the solution. The second binary decision
rule structure was proposed by Bertsimas and Georghiou [10], where the decision rule
is parameterized as

y(ξ) =
{
1, max{ y�

1 ξ , . . . , y�
Pξ} − max{ y�

1
ξ , . . . , y�

P
ξ} ≤ 0,

0, otherwise,
(1.2)

with yp, yp ∈ R
k, p = 1, . . . , P . This binary decision rule structure offers near-

optimal designs at the expense of scalability. Finally, in the recentwork byHanasusanto
et al. [24], the binary decision rule is restricted to the so called “K -adaptable structure”,
resulting to binary adaptable policies with K contingency plans. This approximation
is an adaptation of the work presented in Bertsimas and Caramanis [9], and its use is
limited to two-stage adaptive problems.

The goal of this paper is to develop binary decision rule structures that can be used
together with the real-valued decision rules listed in Table 1 for solving multistage
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adaptive mixed-integer optimization problems. The proposed methodology is inspired
by thework ofBertsimas andCaramanis [8], and uses the tools developed inGeorghiou
et al. [20] to robustly reformulate the problem into a finite dimensional mixed-integer
linear optimization problem. Themotivation of this work is to propose an alternative to
the highly flexible but computationally demanding decision rule (1.2). The emphasis
of this work is placed on the scalability properties of the solution method, allowing to
solve large instances of Problem (1.1) with minimal computational effort. The main
contributions of this paper can be summarized as follows.

1. We propose a linear parameterized binary decision rule structure and derive the
exact reformulation of the decision rule problem that achieves the best binary
decision rule. We prove that for general polyhedral uncertainty sets and arbitrary
decision rule structures, the decision rule problem is computationally intractable,
resulting inmixed-integer linear optimization problemswhose size can grow expo-
nentially with respect to the problem data. To remedy this exponential growth, we
use similar ideas as those discussed inGeorghiou et al. [20], to provide a systematic
trade-off between scalability and optimality, resulting to practical binary decision
rules.

2. We apply the proposed binary decision rules to the class of problems with random-
recourse, i.e., to problem instances where the technology matrix B(ξ) is a given
function of the uncertain vector ξ . We provide the exact reformulation of the
binary decision rule problem, and we show that the resulting mixed-integer linear
optimization problem shares similar complexity as in the fixed-recourse case.

3. We demonstrate the effectiveness of the proposed methods in the context of a
multistage inventory control problem (fixed-recourse problem), and a multistage
knapsack problem (random-recourse problem). We show that for the inventory
control problem, we are able to solve problem instances with 50 time stages and
200 binary recourse decisions, while for the knapsack problemwe are able to solve
problem instances with 25 time stages and 1300 binary recourse decisions, using
IBM ILOG CPLEX 12.5 on an Intel Core i5—3570 CPU at 3.40GHz machine
with 8GB RAM.

The rest of this paper is organized as follows. In Sect. 2, we outline our approach for
binary decision rules in the context of one-stage adaptive optimization problems with
fixed-recourse, and in Sect. 3 we discuss the extension to random-recourse problems.
In Sect. 4, we extend the proposed approach to multistage adaptive optimization prob-
lems and in Sect. 5, we present our computational results. Throughout the paper, our
work is focused on problem instances involving only binary decision rules for ease of
exposition. The extension to problem instances involving both real-valued and binary
recourse decisions can be easily extrapolated, and thus omitted.

Notation We denote scalar quantities by lowercase, non-bold face symbols and vector
quantities by lowercase, boldface symbols, e.g., x ∈ R and x ∈ R

n , respectively. Sim-
ilarly, scalar and vector valued functions will be denoted by, x(·) ∈ R and x(·) ∈ R

n ,
respectively. Matrices are denoted by uppercase symbols , e.g., A ∈ R

n×m . We model
uncertainty by a probability space (Rk ,B(Rk),Pξ ) and denote the elements of the sam-
ple space Rk by ξ . The Borel σ -algebra B(Rk) is the set of events that are assigned
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probabilities by the probability measure Pξ . The supportΞ of Pξ represents the small-
est closed subset of Rk which has probability 1, and Eξ (·) denotes the expectation
operator with respect to Pξ . Tr (A) denotes the trace of a square matrix A ∈ R

n×n

and 1(·) is the indicator function. Finally, ek the kth canonical basis vector, while e
denotes the vector whose components are all ones. In both cases, the dimension will
be clear from the context.

2 Binary decision rules for fixed-recourse problems

In this section, we present our approach for one-stage adaptive optimization problems
with fixed recourse, involving only binary decisions. Given matrices B ∈ R

m×q , D ∈
R
q×k, H ∈ R

m×k and a probability measure Pξ supported on set Ξ for the uncertain
vector ξ ∈ R

k , we are interested in choosing binary functions y(·) ∈ Bk,q in order to
solve:

minimize Eξ

(
(Dξ)� y(ξ)

)

subject to y(·) ∈ Bk,q ,

B y(ξ) ≤ Hξ ,

}
∀ξ ∈ Ξ.

(2.1)

Here, we assume that the uncertainty set Ξ is a non-empty, convex and compact
polyhedron

Ξ =
{
ξ ∈ R

k : ∃ζ ∈ R
v such that W ξ +Uζ ≥ h, ξ1 = 1

}
, (2.2)

whereW ∈ R
l×k,U ∈ R

l×v and h ∈ R
l . Moreover, we assume that Ξ spans Rk . The

parameter ξ1 is set equal to 1 without loss of generality as it allows us to represent
affine functions of the non-degenerate outcomes (ξ2, . . . , ξk) in a compact manner as
linear functions of ξ = (ξ1, . . . , ξk).

If the distribution governing the uncertainty ξ is unknown or if the decision
maker is very risk-averse, then one might choose to alternatively minimize the worst-
case costs with respect to all possible scenarios ξ ∈ Ξ . This can be achieved,
by replacing the objective function in Problem (2.1) with the worst-case objective

maxξ∈Ξ

(
(Dξ)� y(ξ)

)
. By introducing the auxiliary variable τ ∈ R and an epigraph

formulation, we can equivalently write the worst-case problem as the following adap-
tive robust optimization problem.

minimize τ

subject to τ ∈ R, y(·) ∈ Bk,q ,

(Dξ)� y(ξ) ≤ τ,

B y(ξ) ≤ Hξ ,

⎫⎬
⎭ ∀ξ ∈ Ξ.

(2.3)

Notice that ξ appears in the left hand side of the constraint (Dξ)� y(ξ) ≤ τ , multi-
plying the binary decisions y(ξ). Therefore, Problem (2.3) is an instance of the class
of problems with random-recourse, which will be investigated in Sect. 3.
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400 D. Bertsimas, A. Georghiou

Problem (2.1) involves a continuumof decision variables and inequality constraints.
Therefore, in order to make the problem amenable to numerical solutions, there is a
need for suitable functional approximations for y(·).

2.1 Structure of binary decision rules

In this section, we present the structure of the binary decision rules. We restrict the
feasible region of the binary functions y(·) ∈ Bk,q to admit the following piecewise
constant structure:

y(ξ) = YG(ξ), Y ∈ Z
q×g,

0 ≤ YG(ξ) ≤ e,

}
∀ξ ∈ Ξ, (2.4a)

where G : Rk → {0, 1}g is a piecewise constant function:

G1(ξ) := 1, Gi (ξ) := 1
(
α�
i ξ ≥ βi

)
, i = 2, . . . , g, (2.4b)

for given αi ∈ R
k and βi ∈ R, i = 2, . . . , g. Notice, that since G(·) is a piecewise

constant function mapping to {0, 1} and the entries of matrix Y can take any integer
values, then y(ξ) = YG(ξ) gives rise to integer decision rules. By imposing the
additional constraint 0 ≤ YG(ξ) ≤ e, for all ξ ∈ Ξ , y(·) is restricted to the space of
binary decision rules.

We require the pairs (αi , βi ) defining G(·) to satisfy the following conditions.
First, we choose (αi , βi ) which result in unique hyperplanes α�

i ξ − βi = 0 for all
i ∈ {2, . . . , g}, i.e., we avoid creating both 1(ξ ≥ 0.5) and 1(ξ ≤ 0.5), or, both
1(ξ ≤ 0.5) and 1(2ξ ≤ 1). Second, using (αi , βi ) we partition the uncertainty set Ξ
into P polyhedra, where Ξp is defined as follows:

Ξp =
{

ξ ∈ Ξ : α�
i ξ ≥ βi , i ∈ Gp ⊆ {2, . . . , g},

α�
i ξ ≤ βi , i ∈ {2, . . . , g}\Gp

}
, p = 1, . . . , P. (2.5)

Here, given (αi , βi ) the setsGp are chosen such that the number of non-emptypartitions
P is maximized. We require that (αi , βi ), i = 2, . . . , g are chosen such that Ξp have
(i) non-empty relative interior, (ii) the sets Ξp span R

k , (iii) any partition pair Ξi

and Ξ j , i 
= j , can overlap only on one of their facets, and (iv), Ξ = ⋃P
p=1 Ξp.

The number of partitions P that satisfy these conditions is upper bounded by 2g . We
remark that in condition (ii) due to the definition of Ξ in (2.2), Ξp spans Rk if and
only if it has dimension k − 1.

Applying decision rules (2.4) to Problem (2.1) yields the following semi-infinite
problem, which involves a finite number of decision variables Y ∈ Z

q×g , and an
infinite number of constraints:
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Fig. 1 Plot of piecewise
constant function
G2(ξ) = 1(ξ2 ≥ 0). This
structure of G(·) will give rise to
piecewise constant decision
rules y(ξ) = y�G(ξ), for some
y ∈ R

2. If one imposes
constraints y ∈ Z

2 and
0 ≤ y�G(ξ) ≤ 1, y(·) is
restricted to the space of binary
decision rules induced by G

minimize Eξ

(
(Dξ)�YG(ξ)

)

subject to Y ∈ Z
q×g,

B YG(ξ) ≤ Hξ ,

0 ≤ YG(ξ) ≤ e,

⎫
⎬
⎭ ∀ξ ∈ Ξ.

(2.6)

Notice that all decision variables appear linearly in Problem (2.6). Nevertheless, the
objective and constraints are non-linear functions of ξ .

The following example illustrates the use of the binary decision rule (2.6) in a
simple instance of Problem (2.1), briefly discussing the choice of vectors αi ∈ R

k and
βi ∈ R, i = 2, . . . , g, and showing the relationship between Problems (2.1) and (2.6).

Example 1 Consider the following instance of Problem (2.1):

minimize Eξ

(
y(ξ)

)
subject to y(·) ∈ B2,1,

y(ξ) ≥ ξ2,

}
∀ξ ∈ Ξ,

(2.7)

where Pξ is a uniform distribution supported on Ξ = {
(ξ1, ξ2) ∈ R

2 : ξ1 = 1, ξ2 ∈
[−1, 1]}. The optimal solution of Problem (2.7) is y∗(ξ) = 1(ξ2 ≥ 0) achieving an
optimal value of 1

2 . One can attain the same solution by solving the following semi-
infinite problem where G(·) is defined to be G1(ξ) = 1, G2(ξ) = 1(ξ2 ≥ 0), i.e.,
α2 = (0, 1)�, β2 = 0 and g = 2, see Fig. 1.

minimize Eξ

(
y�G(ξ)

)
subject to y ∈ Z

2,

y�G(ξ) ≥ ξ2,

0 ≤ y�G(ξ) ≤ 1,

⎫⎪⎬
⎪⎭

∀ξ ∈ Ξ.
(2.8)

The optimal solution of Problem (2.8) is y∗ = (0, 1)� achieving an optimal value of
1
2 , and is equivalent to the optimal binary decision rule in Problem (2.7).

In the following section, we present robust reformulations of the semi-infinite Prob-
lem (2.6).
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2.2 Computing the best binary decision rule

In this section, we present an exact reformulation of Problem (2.6). The solution of
the reformulated problem will achieve the best binary decision rule associated with
structure (2.4). The main idea used in this section is to map Problem (2.6) to an
equivalent lifted adaptive optimization problem on a higher-dimensional probability
space. This will allow us to represent the non-convex constraints with respect to ξ

in Problem (2.6), as linear constraints in the lifted adaptive optimization problem.
The relation between the uncertain parameters in the original and the lifted problems
is determined through the piecewise constant operator G(·). By taking advantage of
the linear structure of the lifted problem, we will employ linear duality arguments to
reformulate the semi-infinite structure of the lifted problem into a finite dimensional
mixed-integer linear optimization problem. The work presented in this section uses
the tools developed by Georghiou et al. [20, Section 3].

We define the non-linear operator

L : Rk → R
k′
, L(ξ) =

(
ξ

G(ξ)

)
, (2.9)

where k′ = k + g, and define the projection matrices Rξ ∈ R
k×k′

, RG ∈ R
g×k′

such
that

Rξ L(ξ) = ξ , RGL(ξ) = G(ξ).

We will refer to L(·) as the lifting operator. Using L(·) and Rξ , RG , we can rewrite
Problem (2.6) into the following optimization problem:

minimize Eξ

(
(DRξ L(ξ))�Y RGL(ξ)

)

subject to Y ∈ Z
q×g,

B Y RGL(ξ) ≤ HRξ L(ξ),

0 ≤ Y RGL(ξ) ≤ e,

⎫⎪⎬
⎪⎭

∀ξ ∈ Ξ.
(2.10)

Notice that this simple reformulation still has infinite number of constraints. Never-
theless, due to the structure of Rξ and RG , the constraints are now linear with respect
to L(ξ). The objective function of Problem (2.10) can be further reformulated to

Eξ

(
(DRξ L(ξ))�Y RGL(ξ)

)
= Tr

(
MR�

ξ D�Y RG

)
,

where M ∈ R
k′×k′

, M = Eξ (L(ξ)L(ξ)�) is the second order moment matrix of the
uncertain vector L(ξ). In some special cases where the Pξ has a simple structure, e.g.,
Pξ is a uniform distribution, and G(·) is not too complicated, M can be calculated
analytically. If this is not the case, an arbitrarily good approximation of M can be
calculated using Monte Carlo simulations. This is not computationally demanding as
it does not does not involve an optimization problem, and can be done offline.

We now define the uncertain vector ξ ′ = (ξ ′�
1 , ξ ′�

2 )� ∈ R
k′
, such that ξ ′ := L(ξ) =

(ξ�,G(ξ)�)�. The random vector ξ ′ has probability measure Pξ ′ which is defined on
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the space
(
R
k′
,B
(
R
k′))

and is completely determined by the probability measure Pξ

through the relation

Pξ ′
(
B ′) := Pξ

(
{ξ ∈ R

k : L(ξ) ∈ B ′}
)

∀B ′ ∈ B(Rk′
). (2.11)

We also introduce the probability measure support

Ξ ′ := L(Ξ)=
{
ξ ′ ∈ R

k′ : ∃ξ ∈ Ξ such that L(ξ) = ξ ′},
=
{
ξ ′ ∈ R

k′ : Rξ ξ
′ ∈ Ξ, L(Rξ ξ

′) = ξ ′},
(2.12)

and the expectation operatorEξ ′(·)with respect to the probabilitymeasurePξ ′ .Wewill
refer to Pξ ′ and Ξ ′ as the lifted probability measure and uncertainty set, respectively.
Notice that although Ξ is a convex polyhedron, Ξ ′ can be highly non-convex due to
the non-linear nature of L(·). Using the definition of ξ ′ we introduce the following
lifted adaptive optimization problem:

minimize Tr
(
M ′R�

ξ D�Y RG

)

subject to Y ∈ Z
q×g,

B Y RGξ ′ ≤ HRξ ξ
′,

0 ≤ Y RGξ ′ ≤ e,

⎫⎪⎬
⎪⎭

∀ξ ′ ∈ Ξ ′,
(2.13)

where M ′ ∈ R
k′×k′

, M ′ = Eξ ′(ξ ′ξ ′�) is the second order moment matrix associated
with ξ ′. Since there is a one-to-one mapping between Pξ and Pξ ′ , M = M ′.
Proposition 1 Problems (2.10) and (2.13) are equivalent in the following sense: both
problems have the same optimal value, and there is a one-to-one mapping between
feasible and optimal solutions in both problems.

Proof See [20, Proposition 3.6(i)]. ��
The lifted uncertainty set Ξ ′ is an open set due to the discontinuous nature of G(·).

This can be problematic in an optimization framework. We now define Ξ
′ := cl(Ξ ′)

to be the closure of set Ξ ′, and introduce the following variant of Problem (2.13).

minimize Tr
(
M ′R�

ξ D�Y RG

)

subject to Y ∈ Z
q×g,

B Y RGξ ′ ≤ HRξ ξ
′,

0 ≤ Y RGξ ′ ≤ e,

⎫⎪⎬
⎪⎭

∀ξ ′ ∈ Ξ
′
,

(2.14)

The following proposition demonstrates that Problems (2.13) and (2.14) are in fact
equivalent.

Proposition 2 Problems (2.13) and (2.14) are equivalent in the following sense: both
problems have the same optimal value, and there is a one-to-one mapping between
feasible and optimal solutions in both problems.
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Proof To prove the assertion, it is sufficient to show that Problems (2.13) and (2.14)
have the same feasible region. Notice, that since the constraints are linear in ξ ′, the
semi-infinite constraints in Problems (2.13) can be equivalently written as

(HRξ − B Y RG) ∈ (cone(Ξ ′)∗)m,

(Y RG) ∈ (cone(Ξ ′)∗)q ,
(ee�

1 − Y RG) ∈ (cone(Ξ ′)∗)q ,

where cone(Ξ ′)∗ is the dual cone of cone(Ξ ′). Similarly, the semi-infinite constraints
in Problems (2.14) can be equivalently written as

(HRξ − B Y RG) ∈ (cone(Ξ
′
)∗)m,

(Y RG) ∈ (cone(Ξ
′
)∗)q ,

(ee�
1 − Y RG) ∈ (cone(Ξ

′
)∗)q .

From [29, Corollary 6.21], we have that cone(Ξ ′)∗ = cone(Ξ
′
)∗, and therefore, we

can conclude that the feasible regions of Problems (2.13) and (2.14) are equivalent. ��
Problem (2.14) is linear in both the decision variables Y and the uncertain vector

ξ ′. Despite this nice bilinear structure, in the following we demonstrate that Problems
(2.10) and (2.14) are generically intractable for decision rules of type (2.4).

Theorem 1 Problems (2.10) and (2.14) defined through L(·) in (2.9) and G(·) in
(2.4b), are NP-hard even when Y ∈ Z

q×g is relaxed to Y ∈ R
q×g.

Proof See Appendix. ��
Theorem 1 provides a rather disappointing result on the complexity of Problems

(2.10) and (2.14). Therefore, unless P = NP, there is no algorithm that solves generic
problems of type (2.10) and (2.14) in polynomial time. This difficulty stems from
the generic structure of G(·) in (2.4b), combined with a generic polyhedral uncer-
tainty setΞ , resulting in highly non-convex setsΞ

′
. Nevertheless, in the following we

derive the exact polyhedral representation of conv(Ξ
′
), allowing us to use linear dual-

ity arguments from [4,7], to reformulate Problem (2.14) into a mixed-integer linear
optimization problem. We remark that Theorem 1 also covers decision rule problems
involving real-valued, piecewise constant decisions rules constructed using (2.4b), and
demonstrates that these problems are also computationally intractable.

We construct the convex hull of Ξ
′
by taking convex combinations of its extreme

points, denoted by ext(Ξ
′
). These points are either the extreme points of Ξ ′, or the

limit points Ξ
′\Ξ ′. We construct these points using the definition of G(·) and the P

partitions Ξp given in (2.5). Then, for all extreme points ξ ∈ ext(Ξp), we calculate
the one-side limit point at L(ξ). The set of all one-side limit points will coincide with
the set of extreme points of Ξ

′
, see Fig. 2.

We define V and V (p) such that

V :=
P⋃

p=1

V (p), V (p) := ext(Ξp), p = 1, . . . , P. (2.15)
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Fig. 2 Convex hull
representation of Ξ

′
induced by

lifting ξ ′ = (ξ ′
1, ξ

′
2) = L(ξ) =

(ξ,G(ξ))�, where
G(ξ) = 1(ξ ≥ 5) and
ξ ∈ Ξ = [0, 10]. Here, V =
{ext(Ξ1), ext(Ξ2)} = {0, 5, 10}.
The convex hull is constructed
by taking convex combinations
of the points L(0), L(5), L(10)
(black dots), and point
(5, Ĝ1(5))� (white dot), where
Ĝ1(5) is the one-side limit point
at ξ = 5 using partition Ξ1

Due to the discontinuity of G(·), the set of points {ξ ′ ∈ R
k′ : ξ ′ = L(ξ), ξ ∈ V }

does not contain the points Ξ
′\Ξ ′. To construct these points, we now define the

one-sided limit points L̂ p(ξ) = (ξ�, Ĝ p(ξ)�)� for all ξ ∈ V (p) and each partition
p = 1, . . . , P . Here, Ĝ p(ξ) : Rk → R

g is given by:

Ĝ p(ξ) := lim
u∈Ξp, u→ξ

G(u), ∀ξ ∈ V (p), p = 1, . . . , P. (2.16)

From definition (2.4b), for each partition p, G(ξ) is constant for all ξ in the relative
interior of Ξp, which we denote by relint(Ξp). Therefore, for each ξ̃ ∈ V (p), the
one-side limit Ĝ p(ξ̃) is equal to G(ξ) for all ξ ∈ relint(Ξp). Furthermore, since Ξp

spans Rk and thus has dimension k − 1, then there exists at least k vertices in Ξp,
and therefore, at least k one-sided limit points Ĝ p(ξ). From the definition (2.16), we

have that L̂ p(ξ) are the extreme points of Ξ
′
for all ξ ∈ V (p) and p = 1, . . . , P , see

Fig. 2.
The following proposition gives the polyhedral representation of the convex hull

of Ξ
′
.

Proposition 3 Let L(·) be given by (2.9) and G(·) being defined in (2.4b). Then, the
exact representation of the convex hull of Ξ

′
is given by the following polyhedron:

conv (Ξ
′
) =

{
ξ ′ = (ξ ′�

1 , ξ ′�
2 )� ∈ R

k′ : ∃ζp(v) ∈ R+, ∀v ∈ V (p), p = 1, . . . , P, such that
P∑

p=1

∑
v∈V (p)

ζp(v) = 1,

ξ ′
1 =

P∑
p=1

∑
v∈V (p)

ζp(v)v,

ξ ′
2 =

P∑
p=1

∑
v∈V (p)

ζp(v)Ĝ p(v)
}
.

(2.17)
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406 D. Bertsimas, A. Georghiou

Proof The proof is split in two parts: First, we prove that L(Ξ) ⊆ conv (Ξ
′
) holds,

and then we show that conv (cl(L(Ξ))) ⊇ conv (Ξ
′
) is true as well, concluding that

conv (cl(L(Ξ))) = conv (Ξ
′
).

To prove assertion L(Ξ) ⊆ conv (Ξ
′
), pick any ξ ∈ Ξ . By construction ξ belongs

to some partition of Ξ , say Ξp, for which L(ξ) is an element of Ξ ′. There are two
possibilities: (a) ξ lies on a facet of Ξp, or (b) ξ lies in the relative interior of Ξp. If
ξ lies on a facet, and since Ξp spans Rk , then Carathéodory’s Theorem implies that
there are k − 1 extreme points on the facet, v1, . . . , vk−1 ∈ V (p), such that for some
δ(v) ∈ R

k−1+ with
∑k−1

i=1 δ(vi ) = 1, we have ξ = ∑k−1
i=1 δ(vi )vi . SinceG(·) is constant

on each facet, then the k−1 one-side limit points Ĝ p(vi ), v1, . . . , vk−1 ∈ V (p) attain
the same value as G(ξ). Therefore, we have

G

(
k−1∑
i=1

δ(vi )vi

)
=

k−1∑
i=1

δ(vi )Ĝ p(vi ).

Hence, setting ζp(vi ) = δ(vi ), i = 1, . . . , k − 1, in the definition of the convex
hull with the rest of the ζ(v) equal to zero proves part (a) of the assertion. If ξ lies
in the relative interior of Ξp, then again by Carathéodory’s Theorem there are k
extreme points of Ξp such that for some δ(v) ∈ R

k+ and v1, . . . , vk ∈ V (p) with∑k
i=1 δ(vi ) = 1, we have ξ = ∑k

i=1 δ(vi )vi . By construction, there also exists k
one-sided limit in the collection {Ĝ p(v) : v ∈ V (p)} that attain the same value as
G(ξ) for all ξ ∈ relint(Ξp). Thus, we have that

G

(
k∑

i=1

δ(vi )vi

)
=

k∑
i=1

δ(vi )Ĝ p(vi ).

Setting ζp(vi ) = δ(vi ), i = 1, . . . , k, with the rest of the ζ(v) equal to zero proves
part (b) of the assertion.

To prove the second part of assertion, conv (cl(L(Ξ))) ⊇ conv (Ξ
′
), fix ξ ′ ∈ Ξ

′
.

By construction, there exists ζp(v) ∈ R+, p = 1, . . . , P , v ∈ V , such that

P∑
p=1

∑
v∈V (p)

ζp(v) = 1, ξ ′
1 =

P∑
p=1

∑
v∈V (p)

ζp(v)v, ξ ′
2 =

P∑
p=1

∑
v∈V (p)

ζp(v)Ĝ p(v).

This implies that

(
ξ ′
1

ξ ′
2

)
=

P∑
p=1

∑
v∈V (p)

ζp(v)

(
v

Ĝ p(v)

)
,

that is, ξ ′ is a convex combination of either corner points or limit points of L(Ξ).
Therefore, conv (Ξ

′
) is equal to conv (cl(L(Ξ))) almost surely. This concludes the

proof. ��
The convex hull (2.17) is a closed and bounded polyhedral set described by a finite

set of linear inequalities. Therefore, one can rewrite (2.17) as the following polyhedron
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Binary decision rules 407

conv(Ξ
′
) =

{
ξ ′ ∈ R

k′ : ∃ζ ′ ∈ R
v′
such that W ′ξ ′ +U ′ζ ′ ≥ h′}, (2.18)

where W ′ ∈ R
l ′×k′

, U ′ ∈ R
l ′×v′

and h′ ∈ R
l ′ are completely determined through

Propositions 3.
The following proposition captures the essence of robust optimization and provides

the tools for reformulating the infinite number of constraints in Problem (2.14), see
[4,7]. The proof is repeated here to keep the paper self-contained.

Proposition 4 For any Z ∈ R
m×k′

and conv(Ξ
′
) given by (2.18), the following state-

ments are equivalent.

(i) Zξ ′ ≥ 0 for all ξ ′ ∈ conv(Ξ
′
),

(ii) ∃ Λ ∈ R
m×l ′+ with ΛW ′ = Z , ΛU ′ = 0, Λh′ ≥ 0.

Proof We denote by Z�
μ theμth row of the matrix Z . Then, statement (i) is equivalent

to

Zξ ′ ≥ 0 for all ξ ′ ∈ conv(Ξ ′),
⇐⇒ 0 ≤ min

ξ ′

{
Z�

μ ξ : ∃ζ ′ ∈ R
v′

, W ′ξ ′ +U ′ζ ′ ≥ h′} , ∀ μ = 1, . . . ,m

⇐⇒ 0 ≤ max
Λμ∈Rl′

{
h′�Λμ : W ′�Λμ = Zμ, U ′�Λμ = 0, Λμ ≥ 0

}
, ∀ μ = 1, . . . ,m

⇐⇒ ∃ Λμ ∈ R
l ′ with W ′�Λμ = Zμ, U ′�Λμ = 0, h′�Λμ ≥ 0, Λμ ≥ 0, ∀ μ = 1, . . . ,m

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.19)

The equivalence in the third line follows from linear duality. Interpreting Λ�
μ as the

μth row of a new matrix Λ ∈ R
m×l shows that the last line in (2.19) is equivalent to

assertion (ii). Thus, the claim follows. ��
Using Proposition 4 together with the polyhedron (2.18), we can now reformulate

Problem (2.14) into the following mixed-integer linear optimization problem.

minimize Tr
(
M ′R�

ξ D�Y RG

)

subject to Y ∈ Z
q×g, Λ ∈ R

m×l ′+ , Γ ∈ R
q×l ′
+ , Θ ∈ R

q×l ′
+

BY RG + ΛW ′ = HRξ , ΛU ′ = 0, Λh′ ≥ 0,
Y RG = Γ W ′, ΓU ′ = 0, Γ h′ ≥ 0,
ee�

1 − Y RG = ΘW ′, ΘU ′ = 0, Θh′ ≥ 0.

(2.20)

Here, Λ ∈ R
m×l ′+ , Γ ∈ R

q×l ′
+ and Θ ∈ R

q×l ′
+ are the auxiliary variables associated

with constraints B Y RGξ ′ ≤ HRξ ξ
′, 0 ≤ Y RGξ ′ and Y RGξ ′ ≤ e, respectively. We

emphasize that Problem (2.20) is the exact reformulation of Problem (2.14), since
(2.17) is the exact representation of the convex hull of Ξ

′
. Therefore, the solution of

Problem (2.20) achieves the best binary decision rule associated with G(·) in (2.4b).
Notice that the size of the Problem (2.20) grows quadratically with respect to the

number q of binary decisions, and l ′ the number of constraints of conv(Ξ
′
). However,

l ′ can be very large as it depends on the cardinality of V , which is constructed using
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408 D. Bertsimas, A. Georghiou

the extreme points of the P partitions Ξp. Therefore, the size of Problem (2.20) can
grow exponentially with respect to the description of Ξ and the complexity of the
binary decision rule, g, defined in (2.4).

In the following, we present instances of Ξ and G(·), for which the proposed
solution method will result to mixed-integer optimization problems whose size grow
only polynomially with respect to the input parameters.

2.3 Scalable binary decision rule structures

In this section, we derive a scalable mixed-integer linear optimization reformulation of
Problem (2.6) by considering simplified instances of the uncertainty set Ξ and binary
decision rules y(·). We will show that for the structure of Ξ and y(·) considered in
this section, the size of the resulting mixed-integer linear optimization problem grows
polynomially in the size of the original Problem (2.1) as well as the description of the
binary decision rules. We consider two cases: (i) uncertainty sets that can be described
as hyperrectangles and (ii) general polyhedral uncertainty sets.

We now consider case (i), and define the uncertainty set of Problem (2.1) to have
the following hyperrectangular structure:

Ξ = {
ξ ∈ R

k : l ≤ ξ ≤ u, ξ1 = 1
}
, (2.21)

for given l, u ∈ R
k . We restrict the feasible region of the binary functions y(·) ∈ Bk,q

to admit the piecewise constant structure (2.4a), but now G : Rk → {0, 1}g is written
in the form

G(·) = (G1(·),G2,1(·), . . . ,G2,r (·), . . . ,Gk,r (·))�,

with g = 1 + (k − 1)r . Here, G1 : R
k → {0, 1} and Gi, j : R

k → {0, 1}, for
j = 1, . . . , r, i = 2, . . . , k, are piecewise constant functions given by

G1(ξ) := 1, Gi, j (ξ) := 1
(
ξi ≥ βi, j

)
, j = 1, . . . , r, i = 2, . . . , k, (2.22)

for fixed βi, j ∈ R, j = 1, . . . , r, i = 2, . . . , k. By construction, we assume that
li < βi,1 < . . . , βi,r < ui , for all i = 2, . . . , k. Structure (2.22) gives rise to binary
decision rules that are discontinuous along the axis of the uncertainty set, and have r
discontinuities in each direction. Notice that (2.22) is a special case of (2.4b), where
vector α are replaced by ei . One can easily modify (2.22) such that the number of
discontinuities r is different for each direction ξi . We will refer to βi,1, . . . , βi,r as the
breakpoints in direction ξi .

Problem (2.6) still retains the same semi-infinite structure using (2.21) and (2.22).
In the following, we use the same arguments as in Sect. 2.2, to (a) redefine Problem
(2.6) into a higher dimensional space and (b) construct the convex hull of the lifted
uncertainty set and use it together with Proposition 4 to reformulate the infinite number
of constraints of the lifted problem.

123



Binary decision rules 409

We define the non-linear lifting operator L : R
k → R

k′
to be L(·) =

(L1(·)�, . . . , Lk(·)�)� such that

L1 : Rk → R
2, L1(ξ) = (ξ1,G1(ξ))�,

Li : Rk → R
r+1, Li (ξ) = (ξi ,Gi (ξ)�)�, i = 2, . . . , k,

(2.23)

with k′ = 2 + (k − 1)(r + 1). Here, with slight abuse of notation, Gi (·) =
(Gi,1(·), . . . ,Gi,r )

� for i = 2, . . . , k. Notice that L(·) is separable in each com-
ponent Li (·), since Gi (·) only involves ξi . We also introduce matrices Rξ =
(Rξ ,1, . . . , Rξ ,k) ∈ R

k×k′
with Rξ ,1 ∈ R

k×2, Rξ ,i ∈ R
k×(r+1), i = 2, . . . , k, such

that

Rξ L(ξ) = ξ , Rξ ,i Li (ξ) = eiξi , i = 1, . . . , k, (2.24a)

and RG = (RG,1, . . . , RG,k) ∈ R
g×k′

with RG,1 ∈ R
g×2, RG,i ∈ R

g×(r+1), i =
2, . . . , k, such that

RGL(ξ) = G(ξ), RG,i Li (ξ) = (0, . . . ,Gi (ξ)�, . . . , 0)�, i = 1, . . . , k.

(2.24b)

As in Sect. 2.2, using the definition of L(·) and Rξ , RG in (2.23) and (2.24), respec-
tively, we can rewrite Problem (2.6) into Problem (2.10).

Wenowdefine the uncertain vector ξ ′ = (ξ ′�
1 , . . . , ξ ′�

k )� ∈ R
k′
such that ξ ′ = L(ξ)

and ξ ′
i = Li (ξ) for i = 1, . . . , k. ξ ′ has probability measure Pξ ′ defined using (2.11),

and corresponding probability measure support is given by

Ξ ′ = L(Ξ) =
{
ξ ′ ∈ R

k′ : l ≤ Rξ ξ
′ ≤ u, L(Rξ ξ

′) = ξ ′}. (2.25)

Notice that since both Ξ and L(·) are separable in each component ξi , Ξ ′ can be
written in the following equivalent form:

Ξ ′ = L (Ξ) = {
(ξ ′�

1 , . . . , ξ ′�
k )� ∈ R

k′ : ξ i ∈ Ξ ′
i , i = 1, . . . , k

}
,

where Ξ ′
i = Li (Ξ). Therefore, we can express conv(cl(Ξ ′)) as

conv(cl(Ξ ′))= {
(ξ ′�

1 , . . . , ξ ′�
k )� ∈ R

k′ : ξ ′
i ∈ conv(cl(Ξ ′

i )), i = 1, . . . , k
}
,

= {
(ξ ′�

1 , . . . , ξ ′�
k )� ∈ R

k′ : ξ ′
i ∈ conv(Ξ

′
i ), i = 1, . . . , k

}
.

(2.26)
It is thus sufficient to derive a closed-form representation for themarginal convex hulls
conv(Ξ

′
i ).

We now construct the polyhedral representation of conv(Ξ
′
i ). As before, conv(Ξ

′
i )

will be constructed by taking convex combinations of its extreme points. Set conv(Ξ
′
1)

has the trivial representation conv(Ξ
′
1) = {ξ ′

1 ∈ R
2 : ξ ′

1 = e}. We define the sets
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Fig. 3 Convex hull representation of Ξ
′
i induced by lifting ξ ′

i = Li (ξ) = (ξi ,Gi (ξ)�)�, where Gi (ξ) =
(1(ξi ≥ 1), 1(ξi ≥ 2))� and ξi ∈ [0, 3]. Here, Vi = {0, 1, 2, 3}. The convex hull is constructed by
taking convex combinations of the points L(0), L(1), L(2), L(3) (black dots), and points (1, Ĝ1,1(1))�,
(2, Ĝ1,2(2))� (white dot), where Ĝ1,1(1) and Ĝ1,2(2) are the one-side limit point at points ξi = 1 and
ξi = 2, respectively

Vi = {li , βi,1, . . . , βi,r , ui }, i = 2, . . . , k, and introduce the following partitions for
each dimension of Ξ .

Ξi,1 := {ξi ∈ R : li ≤ ξi ≤ βi,1},
Ξi,p := {ξi ∈ R : βi,p−1 ≤ ξi ≤ βi,p}, p = 2, . . . , r,

Ξi,r+1 := {ξi ∈ R : βi,r ≤ ξi ≤ ui },

⎫⎪⎬
⎪⎭
i = 2, . . . , k. (2.27)

Therefore, Vi (1) = {li , βi,1}, Vi (p) = {βi,p−1, βi,p}, p = 2, . . . , r, Vi (r + 1) =
{βi,r , ui }. It is easy to see that points L(eiξi ), ξi ∈ Vi , are extreme points of conv(Ξ

′
i ),

see Fig. 3. Notice that Gi (eiξi ) is constant for all ξi in the interior of Ξi,p, i.e.,
ξi ∈ int(Ξi,p), p = 1, . . . , r + 1, but can attain different values on the boundaries of
the partitions. To this end, for each partition and ξi ∈ Vi (p), we define the one-sided
limit points Ĝi,p(eiξi ) ∈ R

r+1 such that

Ĝi,p(eiξi ) = lim
u∈Ξi,p, u→ξi

Gi (ei u), ∀ξi ∈ Vi (p), p = 1, . . . , r + 1, (2.28)

for all i = 2, . . . , k. Gi (eiξi ) is constant for all ξi ∈ int(Ξi,p), and each partition p.
Therefore, for each ξ̃i ∈ Vi (p), the one-side limit Ĝi,p(ei ξ̃i ) is equal to Gi (eiξi ) for
all ξi ∈ int(Ξi,p).

The following proposition gives the polyhedral representation of each conv(Ξ
′
i ),

i = 2, . . . , k. A visual representation of conv(Ξ
′
i ) is depicted in Fig. 3.

Proposition 5 For each i = 2 . . . , k, let Li (·) be given by (2.23) and Gi (·) being
defined in (2.22). Then, the exact representation of the convex hull of each Ξ

′
i is given

by the following polyhedron:
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conv (Ξ
′
i ) =

{
ξ ′
i = (ξ ′�

i,1 , ξ
′�
i,2)

� ∈ R
r+1 : ∃ζi,p(v) ∈ R+, ∀v ∈ Vi (p), p = 1, . . . , r + 1, such that

r+1∑
p=1

∑
v∈Vi (p)

ζi,p(v) = 1,

ξ ′
i,1 =

r+1∑
p=1

∑
v∈Vi (p)

ζi,p(v)v,

ξ ′
i,2 =

r+1∑
p=1

∑
v∈Vi (p)

ζi,p(v)Ĝ p(eiv)
}
.

(2.29)

Proof Proposition 5 can be proven using similar arguments as in Proposition 3. ��

Set conv(Ξ
′
i ) has 2r + 2 extreme points. Using the extreme point representation

(2.29), conv(Ξ
′
i ) can be represented through 4r+4 constraints. Therefore, conv(Ξ

′
) =

×k
i=1conv(Ξ

′
i ) can be represented using a total of 2+k(4r+4) constraints, i.e., its size

grows quadratically in the dimension ofΞ , k, and the complexity of the binary decision
rule r . One can now use the polyhedral description (2.29) together with Proposition 4,
to reformulate Problem (2.14) into a mixed-integer linear optimization problemwhich
can be expressed in the form (2.20). The size of the mixed-integer linear optimization
problemwill be polynomial in q, m, k and r . We emphasize that since the convex hull
representation (2.29) is exact, the solution of Problem (2.20) achieves the best binary
decision rule associated with G(·) defined in (2.22). For G(·) and Ξ defined in (2.22)
and (2.21), respectively, the following proposition allows to instead of optimizing
over integers in Problem (2.20), to restrict the integer variables to Y ∈ {−1, 0, 1}q×g

without introducing an additional approximation. This will significantly reduce the
computational time needed to solve instances of Problem (2.20).

Proposition 6 Let G(·) being defined in (2.22) and Ξ being a box uncertainty set
defined in (2.21). Then, constraints (2.4a) imply that we can restrict Y ∈ Z

q×g to
Y ∈ {−1, 0, 1}q×g without loss of generality.

Proof First notice that by definition of G(·) in (2.22), the break points βi, j are unique
in each direction i ∈ {2, . . . , k}, and therefore the components of G(ξ) are linearly
independent for all ξ ∈ Ξ , i.e,

v�G(ξ) = 0, ∀ξ ∈ Ξ �⇒ v = 0.

First we discuss problem instances involving one uncertain parameter, i.e., Ξ =
{ξ ∈ R

2 : ξ1 = 1, l ≤ ξ2 ≤ u}, and y(ξ) = y�G(ξ), y ∈ Z
r+1 is one of the

decision rules satisfying (2.4a). We will now prove by induction that constraint (2.4a)
implies yi ∈ {−1, 0, 1} for all i = 1, . . . , r + 1. We will prove the basis step by
contradiction. Assume that yr+1 > 1, then either y1 = 0, . . . , yr = 0, which implies
that

y�G(ξ) > 1, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [β2,r , u]},

y�G(ξ) = 0, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [l, β2,r )},
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or
∑r

j=1 y j ≤ 1− yr+1 < 0 which implies that there exists a subset Ξr ⊆ {ξ ∈ R
2 :

ξ1 = 1, ξ2 ∈ [l, β2,r )} such that

y�G(ξ) ≤ 1, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [β2,r , u]},

y�G(ξ) < 0, ∀ξ ∈ Ξr .
(2.30)

In both cases, the constraint 0 ≤ y�G(ξ) ≤ 1 for all ξ ∈ Ξ , is violated, and therefore
it must be the case that yr+1 ≤ 1. Demonstrating the case that yr+1 < −1 is also
infeasible can be shown in a similar way, thus concluding that yr+1 ∈ {−1, 0, 1}.

We will also prove the inductive step by contradiction. For some i ∈ {1, . . . , r},
assume that yi+1 ∈ {−1, 0, 1}, . . . , yr+1 ∈ {−1, 0, 1}, and assume that yi > 1. Notice
that y�G(ξ) can influence its value on ξ ∈ [β2,i , β2,i+1), by only taking combinations
of basis functionsG1(·), . . . ,Gi (·). Then, either y1 = 0, . . . , yi−1 = 0, which implies
that

y�G(ξ) > 1, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [β2,i , β2,i+1)},

y�G(ξ) = 0, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [l, β2,i )},

or
∑i−1

j=1 y j ≤ 1 − yi < 0 which implies that there exists a subset Ξi ⊆ {ξ ∈ R
2 :

ξ1 = 1, ξ2 ∈ [l, β2,i )} such that

y�G(ξ) ≤ 1, ∀ξ ∈ {ξ ∈ R
2 : ξ1 = 1, ξ2 ∈ [β2,i , β2,i+1)},

y�G(ξ) < 0, ∀ξ ∈ Ξi .
(2.31)

In both cases, the constraint 0 ≤ y�G(ξ) ≤ 1, for all ξ ∈ Ξ is violated, and therefore
it must be the case that yi ≤ 1. Again, demonstrating the case that yi < −1 is also
infeasible can be shown in a similar way, thus concluding that y ∈ {−1, 0, 1}r+1.

If the uncertainty set involves more than one uncertain parameter, since the compo-
nents of G(ξ) are linearly independent for all ξ ∈ Ξ , it is easy to see that if for some
p ∈ {2, . . . , k} and j ∈ {1, . . . , r}, yp, j ∈ {−1, 1}, i.e., non-zero, then yi, j = 0 for all
i ∈ {2 . . . , k}, i 
= p and j ∈ {1, . . . , r}. Therefore, we conclude that if G(·) defined
in (2.22) andΞ in (2.21), we can restrict Y ∈ Z

q×g to Y ∈ {−1, 0, 1}q×g without loss
of generality. ��

We now consider case (ii), and we assume that Ξ is a generic set of the type (2.2)
and G(·) is given by (2.22). From Sect. 2, we know that the number of constraints
needed to describe the polyhedral representation of conv(Ξ

′
) grows exponentially

with the description of Ξ and complexity of the decision rule. In the following, we
present a systematic way to construct a tractable outer approximation for conv(Ξ

′
).

Using this outer approximation to reformulate the lifted problem (2.10), will not
yield the best binary decision rule structure associated with function G(·) but rather
a conservative approximation. Nevertheless, the size of the resulting mixed-integer
linear optimization problemwill only grow polynomiallywith respect to the constrains
of Ξ and complexity of the binary decision rule.

123



Binary decision rules 413

To this end, let {ξ ∈ R
k : l ≤ ξ ≤ u} be the smallest hyperrectangle containing Ξ .

We have

Ξ = {
ξ ∈ R

k : ∃ζ ∈ R
v such that W ξ +Uζ ≥ h, ξ1 = 1

}
,

= {
ξ ∈ R

k : ∃ζ ∈ R
v such that W ξ +Uζ ≥ h, ξ1 = 1, l ≤ ξ ≤ u

}
,
(2.32)

which implies that the lifted uncertainty set Ξ ′ = L(Ξ) can be expressed as Ξ ′ =
Ξ ′

1 ∩ Ξ ′
2, where

Ξ ′
1 :=

{
ξ ′ ∈ R

k′ : ∃ζ ∈ R
v such that WRξ ξ

′ +Uζ ≥ h, ξ ′
1 = 1

}

Ξ ′
2 :=

{
ξ ′ ∈ R

k′ : l ≤ Rξ ξ
′ ≤ u, L(Rξ ξ

′) = ξ ′} .

Notice that Ξ ′
2 has exactly the same structure as (2.25). We thus conclude that

Ξ̂ ′ := {Ξ ′
1 ∩ conv(Ξ

′
2)} ⊇ conv(Ξ

′
), (2.33)

and therefore, Ξ̂ ′ can be used as an outer approximation of conv(Ξ
′
). Since conv(Ξ

′
2)

can bewritten as the polyhedron induced by Proposition 5, set Ξ̂ ′ has a total of (l+1)+
(2+k(4r+4)) constraints. As before, one can nowuse the polyhedral description of Ξ̂ ′
together with Proposition 4, to reformulate Problem (2.14) into a mixed-integer linear
optimization problemwhich can be expressed in the form (2.20). The size of themixed-
integer linear optimization problemwill be polynomial in q, m, k, l and r . Since Ξ̂ ′ ⊇
conv(Ξ

′
), the solution of Problem (2.20) might not achieve the best binary decision

rule induced by (2.22), but rather a conservative approximation. Nevertheless, using
this systematic decomposition of the uncertainty set, we can efficiently apply binary
decision rules to problems where the uncertainty set has arbitrary convex polyhedral
structure.

One can use G(·) given by (2.22) together with this systematic decomposition of
Ξ to achieve the same binary decision rule structures as those offered by G(·) defined
in (2.4b). We will illustrate this through the following example. We assume that the
problem in hand requires a generic Ξ of type (2.2), and we want to parameterize the
binary decision rule to be a linear function of G(ξ) = 1

(
α�ξ ≥ β

)
for some α ∈ R

k

and β ∈ R. We can introduce an additional random variable ξ̃ inΞ such that ξ̃ = α�ξ .
Here ξ̃ is completely determined by the random variables already presented inΞ . The
modified support can now be written as follows,

Ξ =
{
(ξ , ξ̃ ) ∈ R

k+1 : ∃ζ ∈ R
v, W ξ +Uζ ≥ h, ξ1 = 1, ξ̃ = α�ξ

}
,

=
{
(ξ , ξ̃ ) ∈ R

k+1 : ∃ζ ∈ R
v, W ξ +Uζ ≥ h, ξ1 = 1, ξ̃ = α�ξ , l ≤ ξ ≤u, l̃≤ ξ̃ ≤ ũ

}
,

(2.34)

where {(ξ , ξ̃ ) ∈ R
k+1 : l ≤ ξ ≤ u, l̃ ≤ ξ̃ ≤ ũ} is the smallest hyperrectangle

containing Ξ . We can now use

G(ξ , ξ̃ ) = 1
(
ξ̃ ≥ β

)
, (2.35)
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which is an instance of (2.22), to achieve the same structure as G(ξ) = 1
(
α�ξ ≥ β

)
.

Defining appropriate L(·) and Rξ , RG , we can use the following decomposition of the
lifted uncertainty set Ξ ′ = Ξ ′

1 ∩ Ξ ′
2 such that

Ξ ′
1 :=

{
(ξ ′, ξ̃ ′) ∈ R

k′+1 : ∃ζ ∈ R
v such that WRξ ξ ′ +Uζ ≥ h, ξ ′

1 = 1, ξ̃ ′ = α�Rξ ξ ′} ,

Ξ ′
2 :=

{
(ξ ′, ξ̃ ′) ∈ R

k′+1 : l ≤ Rξ ξ ′ ≤ u, l̃ ≤ ξ̃ ′ ≤ ũ, L(Rξ (ξ ′, ξ̃ ′)) = (ξ ′, ξ̃ ′)
}

.

By defining, Ξ̂ ′ := {Ξ ′
1 ∩ conv(Ξ ′

2)} ⊇ conv(Ξ
′
) we can reformulate Problem (2.14)

into a mixed-integer linear optimization problem with polynomial number of decision
variable and constraints with respect to the the input data. Once more, we emphasize
that this systematic decomposition might not achieve the best binary decision rule
induced by G(·) but rather a conservative approximation. Nevertheless, we can now
achieve the same flexibility for the binary decision rules as those offered by (2.4b)
without the exponential growth in the size of the resulting problem.

3 Binary decision rules for random-recourse problems

In this section, we present our approach for one-stage adaptive optimization problems
with random recourse. The solution method of this class of problems is an adaptation
of the solution method presented in Sect. 2.2. Given function B : Rk → R

m×q and
matrices D ∈ R

q×k, H ∈ R
m×k and a probability measure Pξ supported on set Ξ for

the uncertain vector ξ ∈ R
k , we are interested in choosing binary functions y(·) ∈ Bk,q

in order to solve:
minimize Eξ

(
(Dξ)� y(ξ)

)

subject to y(·) ∈ Bk,q ,

B(ξ) y(ξ) ≤ Hξ ,

}
∀ξ ∈ Ξ,

(3.1)

where Ξ is a generic polyhedron of type (2.2). We assume that the recourse matrix
B(ξ) depends linearly on the uncertain parameters. Therefore, the μth row of B(ξ) is
representable as ξ�Bμ for matrices Bμ ∈ R

k×q with μ = 1, . . . ,m. Problem (3.1)
can therefore be written as the following problem:

minimize Eξ

(
(Dξ)� y(ξ)

)

subject to y(·) ∈ Bk,q ,

ξ�Bμ y(ξ) ≤ H�
μ ξ , μ = 1, . . . ,m

}
∀ξ ∈ Ξ,

(3.2)

where H�
μ denotes the μth row of matrix H . Problem (3.2) involves a continuum of

decision variables and inequality constraints. Therefore, in order to make the problem
amenable to numerical solutions, we restrict y(·) to admit structure (2.4). Applying the
binary decision rules (2.4) to Problem (3.2) yields the following semi-infinite problem,
which involves a finite number of decision variables Y ∈ Z

q×g , and an infinite number
of constraints:
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minimize Eξ

(
ξ�D�YG(ξ)

)

subject to Y ∈ Z
q×g,

ξ�BμYG(ξ) ≤ H�
μ ξ , μ = 1, . . . ,m,

0 ≤ YG(ξ) ≤ e,

⎫⎪⎬
⎪⎭

∀ξ ∈ Ξ.
(3.3)

Notice that all decision variables appear linearly in Problem (2.6). Nevertheless, the
objective and constraints are non-linear functions of ξ .

We now define the non-linear lifting operator L : Rk → R
k′
such that

L : Rk → R
k′
, L(ξ) =

⎛
⎜⎜⎜⎜⎜⎝

ξ

G(ξ)

G(ξ)ξ1
...

G(ξ)ξk

⎞
⎟⎟⎟⎟⎟⎠

, (3.4)

k′ = k + g + gk. Note that including both components G(ξ) and G(ξ)ξ1 in L(ξ)

is redundant as by construction ξ1 = 1. Nevertheless, in the following we adopt
formulation (3.4) for ease of exposition. We also define matrices Rξ ∈ R

k×k′
, and

RG ∈ R
q×k′

such that

Rξ L(ξ) = ξ , RGL(ξ) = G(ξ). (3.5)

In addition, we define F : R
k×g → R

k′
that expresses the quadratic polynomials

ξ�BμYG(ξ), as linear functions of L(ξ) through the following constraints:

y′
μ = F(BμY ), y′�

μ L(ξ) = ξ�BμYG(ξ), y′
μ ∈ R

k′
, μ = 1, . . . ,m, ∀ξ ∈ Ξ.

(3.6)
Constraints y′

μ = F(BμY ), μ = 1, . . . ,m, are linear, since F(·) effectively reorders
the entries of matrix BμY into the vector y′

μ. Using (3.4), (3.5) and (3.6), Problem
(3.3) can now be rewritten into the following optimization problem.

minimize Tr
(
MR�

ξ D�Y RG

)

subject to Y ∈ Z
q×g,

y′�
μ L(ξ) ≤ H�

μ Rξ L(ξ), μ = 1, . . . ,m,

y′
μ = F(BμY ), y′

μ ∈ R
k′
, μ = 1, . . . ,m,

0 ≤ Y RGL(ξ) ≤ e,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀ξ ∈ Ξ.
(3.7)

Problem (3.7) has similar structure as Problem (2.10), i.e., both Y and L(ξ) appear
linearly in the constraints. Therefore, in the following we redefine Problem (3.7) in a
higher dimensional space and apply Proposition 4 to reformulate the problem into a
mixed-integer optimization problem.

We define the uncertain vector ξ ′ = (ξ ′�
1,1, ξ

′�
1,2, ξ

′�
2,1, . . . , ξ

′�
2,k)

� ∈ R
k′
such that

ξ ′ = L(ξ) and ξ ′
1,1 = ξ , ξ ′

1,2 = G(ξ), and ξ ′
2,i = G(ξ)ξi for i = 1, . . . , k. ξ ′ has
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Fig. 4 Visualization of L(ξ) = (ξ1, ξ2,G(ξ)) (left) and L̃(ξ) = (ξ1, ξ2,G(ξ)ξ2) (right) where G(ξ) =
1(ξ1 ≥ 2), for ξ1 ∈ [0, 4] and ξ2 ∈ [−2, 2]. Here, V = {(0,−2), (0, 2), (2, −2), (2, 2), (4, −2), (4, 2)}.
The convex hull of L(ξ) is constructed by taken convex combinations of L(ξ) for all ξ ∈ V and
(2, −2, Ĝ(2, −2)))�, (2, 2, Ĝ((2, 2)))�, and the convex hull of L̃(ξ) is constructed by taken convex com-
binations of L̃(ξ) for all ξ ∈ V and (2, −2, Ĝ(2, −2)(−2))�, (2, 2, Ĝ(2, 2)2)�

probability measure Pξ ′ defined as in (2.11) and support Ξ ′ = L(Ξ). Problem (3.7)
can now be written as the equivalent semi-infinite problem defined on the lifted space
ξ ′.

minimize Tr
(
M ′R�

ξ D�Y RG

)

subject to Y ∈ Z
q×g,

y′�
μ ξ ′ ≤ H�

μ Rξ ξ ′, μ = 1, . . . ,m,

y′
μ = F(BμY ), y′

μ ∈ R
k′
, μ = 1, . . . ,m,

0 ≤ Y RGξ ′ ≤ e,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

∀ξ ′ ∈ Ξ ′,
(3.8)

We will construct the convex hull of Ξ
′
in the same way as in Sect. 2.2. Notice

that conv(Ξ
′
) will have the same number of extreme points as the convex hull defined

through the lifting L(ξ) = (ξ�,G(ξ)�)�, see Fig. 4.
By defining the partitions Ξp of Ξ as in (2.5), and Ĝ p(ξ) as in (2.16), it is easy to

see that conv(Ξ
′
) can be described as a convex combination of the following points.

⎛
⎜⎜⎜⎜⎜⎝

ξ

Ĝ p(ξ)

Ĝ p(ξ)ξ1
...

Ĝ p(ξ)ξk

⎞
⎟⎟⎟⎟⎟⎠

, ξ ∈ V (p), p = 1, . . . , P.

The following proposition gives the polyhedral representation of the convex hull
of Ξ

′
.

Proposition 7 Let L(·) being defined in (3.4) and G(·) being defined in (2.4b). Then,
the exact representation of the convex hull of Ξ

′
is given by the following polyhedron:
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conv (Ξ
′
) =

{
ξ ′ = (ξ ′�

1,1, ξ
′�
1,2, ξ

′�
2,1, . . . , ξ

′�
2,k )

� ∈ R
k′ : ∃ζp(v) ∈ R+, ∀v ∈ V (p), p = 1, . . . , P,

P∑
p=1

∑

v∈V (p)

ζp(v) = 1,

ξ ′
1,1 =

P∑
p=1

∑

v∈V (p)

ζp(v)v,

ξ ′
1,2 =

P∑
p=1

∑

v∈V (p)

ζp(v)Ĝ p(v),

ξ ′
2,i =

P∑
p=1

∑

v∈V (p)

ζp(v)Ĝ p(v)vi , i = 1, . . . , k
}
.

(3.9)

Proof Proposition 7 can be proven using similar arguments as in Proposition 3. ��
The description of polyhedron (3.9) inherits the same exponential complexity as

(2.17), since the number of constraints in (3.9) depends on the cardinality of V which is
constructed using the extreme points of the partitionsΞp . Nevertheless, the description

(3.9) provides the exact representation of the convex hull for conv (Ξ
′
).

Using Proposition 4 together with the polyhedron (3.9), we can now reformulate
Problem (3.8) into the following mixed-integer linear optimization problem.

minimize Tr
(
M ′R�

ξ D�Y RG

)

subject to Y ∈ Z
q×g, Γ ∈ R

q×l ′
+ , Θ ∈ R

q×l ′
+ ,

y′
μ ∈ R

k′
, λμ ∈ R

m×l ′+ ,

y′
μ + λμW ′ = R�

ξ
Hμ, λμU ′ = 0, λμh′ ≥ 0

y′
μ = F(BμY ), y′

μ ∈ R
k′
,

⎫⎪⎪⎬
⎪⎪⎭

μ = 1, . . . ,m,

Y RG = Γ W ′, ΓU ′ = 0, Γ h′ ≥ 0,

ee�
1 − Y RG = ΘW ′, ΘU ′ = 0, Θh′ ≥ 0.

(3.10)
Here, the auxiliary variables λμ ∈ R

m×l ′+ are associated with constraints y′�
μ ξ ′ ≤

H�
μ Rξ ξ ′, for μ = 1, . . . ,m, and Γ ∈ R

q×l ′
+ and Θ ∈ R

q×l ′
+ with constraints 0 ≤

Y RGξ ′ and Y RGξ ′ ≤ e, respectively. Problem (3.10) is the exact reformulation of
Problem (3.8), since (3.9) is the exact representation of the convex hull ofΞ

′
, and thus

the solution of Problem (3.10) achieves the best binary decision rule associated with
G(·) in (2.4b). Nevertheless, the size of Problem (3.10) is affected by the exponential
growth of the constraints in conv (Ξ

′
). One can mitigate this exponential growth by

considering simplified structures of Ξ and G(·), following similar guidelines as those
those discussed in Sect. 2.3.

4 Binary decision rules for multistage problems

In this section, we extend the methodology presented in Sect. 2 to cover multistage
adaptive optimization problems with fixed-recourse. The mathematical formulations
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presented can easily be adapted to random-recourse problems by following the guide-
lines of Sect. 3.

The dynamic decision process considered can be described as follows: A decision
maker first observes an uncertain parameter ξ1 ∈ R

k1 and then takes a binary decision
y1(ξ1) ∈ {0, 1}q1 . Subsequently, a second uncertain parameter ξ2 ∈ R

k2 is revealed,
in response to which the decision maker takes a second decision y2(ξ1, ξ2) ∈ {0, 1}q2 .
This sequence of alternating observations and decisions extends over T time stages. To
enforce the non-anticipative structure of the decisions, a decision taken at stage t can
only depend on the observed parameters up to and including stage t , i.e., yt (ξ

t )where
ξ t = (ξ�

1 , . . . , ξ�
t )� ∈ R

kt , with kt = ∑t
s=1 ks . For consistency with the previous

sections, and with slight abuse of notation, we assume that k1 = 1 and ξ1 = 1. As
before, setting ξ1 = 1 is a non-restrictive assumption which allows to represent affine
functions of the non-degenerate outcomes (ξ�

2 , . . . , ξ�
t )� in a compact manner as

linear functions of (ξ�
1 , . . . , ξ�

t )�. We denote by ξ = (ξ�
1 , . . . , ξ�

T )� ∈ R
k the vector

of all uncertain parameters, where k = kT . Finally, we denote by Bkt ,qt the space of

binary functions from R
kt to {0, 1}qt .

Given matrices Bts ∈ R
mt×qs , Dt ∈ R

qt×kt and Ht ∈ R
mt×kt , and a probability

measure Pξ supported on set Ξ given by (2.2), for the uncertain vector ξ ∈ R
k , we

are interested in choosing binary functions yt (·) ∈ Bkt ,qt in order to solve:

minimize Eξ

(
T∑
t=1

(Dtξ
t )� yt (ξ

t )

)

subject to yt (·) ∈ Bkt ,qt ,
t∑

s=1

Bts ys(ξ
s) ≤ Htξ

t ,

⎫
⎪⎬
⎪⎭

t = 1, . . . , T, ∀ξ ∈ Ξ.

(4.1)

Problem (4.1) involves a continuum of decision variables and inequality constraints.
Therefore, in order to make the problem amenable to numerical solutions, we restrict
the feasible region of the binary functions yt (·) ∈ Bkt ,qt to admit the following piece-
wise constant structure:

yt (ξ) = YtGt (ξ), Y ∈ Z
qt×gt ,

0 ≤ YtGt (ξ) ≤ e,

}
t = 1, . . . , T, ∀ξ ∈ Ξ, (4.2a)

where Gt : Rk → {0, 1}gt can be expressed by Gt (·) = (G1(·)�, . . . ,Gt (·)�), and
Gt : Rkt → {0, 1}gt are the piecewise constant functions:

G1(ξ1) := 1, Gt,i (ξ) := 1
(
α�
t,i ξ

t ≥ βt,i

)
, i = 1, . . . , gt , t = 2, . . . , T,

(4.2b)
for given αt,i ∈ R

kt and βt,i ∈ R, i = 1, . . . , g, t = 2, . . . , T . The dimension of
Gt (·) is gt , with gt = ∑t

s=1 gs . The non-anticipativity of yt (·) is ensured by restricting
Gt (·) to depend only on random parameters up to and including stage t .

The pairs (αt,i , βt,i ) defining the G(·) need to satisfy the same requirements as
those presented in Sect. (2.4), namely, (αt,i , βt,i ) are chosen such that they result to
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unique hyperplanes α�
t,iξ

t − βt,i = 0 for all i ∈ {2, . . . , g} and t ∈ {2, . . . , T }, and
the partitions Ξp given by (2.5) that result from the choices of (αt,i , βt,i ), must have
(i) non-empty relative interior, (ii) Ξp spans Rk , (iii) any partition pair Ξi and Ξ j ,
i 
= j , can overlap only on one of their facets, and (iv) Ξ = ⋃P

p=1 Ξp.
Applying decision rules (4.2) to Problem (4.1) yields the following semi-infinite

problem.

minimize Eξ

(
T∑
t=1

(Dtξ
t )�YtGt (ξ)

)

subject to Yt ∈ Z
qt×gt ,

t∑
s=1

BtsYsG
s(ξ) ≤ Htξ

t ,

0 ≤ YtGt (ξ) ≤ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t = 1, . . . , T, ∀ξ ∈ Ξ.

(4.3)

We can now use the lifting techniques to first express Problem (4.3) in a higher
dimensional space, compute the convex hull associated with the non-convex uncer-
tainty set of the lifted problem, and finally reformulate the semi-infinite structure
using Proposition 4. We define lifting Lt : R

k → R
k′t
, such that Lt (·) =

(L1(·)�, . . . , Lt (·)�)�, where

Lt : Rkt → R
k′
t , Lt (ξ) = (ξ�

t ,Gt (ξ)�)�, t = 1, . . . , T, (4.4a)

Here, k′
t = kt + gt . By convention L(·) = (L1(·)�, . . . , LT (·)�)� and k′t = ∑t

s=1 k
′
s

with k′ = k′T . In addition, we define matrices, Rξ ,t ∈ R
kt×k′

and RG,t ∈ R
gt×k′

such
that

Rξ ,t L(ξ) = ξ t , RG,t L(ξ) = G(ξ)t , t = 1, . . . , T . (4.4b)

Using (4.4), Problem (4.3) can now be rewritten in the following form:

minimize Eξ

(
T∑
t=1

(Dt Rξ ,t L(ξ))�Yt RG,t L(ξ)

)

subject to Yt ∈ Z
qt×gt ,

t∑
s=1

BtsYs RG,s L(ξ) ≤ Ht Rξ ,t L(ξ),

0 ≤ Yt RG,t L(ξ) ≤ e

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

t = 1, . . . , T, ∀ξ ∈ Ξ.

(4.5)

Problem (4.5) has similar structure as Problem (2.10), i.e., both Yt and L(ξ) appear
linearly in the constraints. Therefore, in the following we redefine Problem (4.5) in a
higher dimensional space and apply Proposition 4 to reformulate the problem into a
mixed-integer optimization problem.

Wenowdefine the uncertain vector ξ ′ = (ξ ′�
1 , . . . , ξ ′�

T )� ∈ R
k′
such that ξ ′ = L(ξ)

and ξ ′
t = Lt (ξ) for t = 1, . . . , T . ξ ′ has probability measure Pξ ′ defined using (2.11),
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and probability measure support Ξ ′ = L(Ξ). Using the definition of ξ ′, the lifted
semi-infinite problem is given as follows:

minimize Eξ ′

(
T∑
t=1

(Dt Rξ ,tξ
′)�Yt RG,tξ

′
)

subject to Yt ∈ Z
qt×gt ,

t∑
s=1

BtsYs RG,sξ
′ ≤ Ht Rξ ,tξ

′,

0 ≤ Yt RG,tξ
′ ≤ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t = 1, . . . , T, ∀ξ ′ ∈ Ξ ′.
(4.6)

The definition of L(·) in (4.4a) share almost identical structure as L(·) in (2.9).
Therefore, the convex hull of Ξ

′
can be expressed as a slight variant of the poly-

hedron given in (2.17), and will constitute the exact representation of the convex
hull of conv(Ξ

′
). Using Proposition 4 together with the polyhedral representation of

conv(Ξ
′
), we can now reformulate Problem (3.8) into the following mixed-integer

linear optimization problem.

minimize
T∑
t=1

Tr
(
M ′R�

ξ ,t D
�
t Yt RG,t

)

subject to Yt ∈ Z
qt×gt , Λ ∈ R

mt×l ′
+ , Γ ∈ R

qt×l ′
+ , Θ ∈ R

qt×l ′
+

t∑
s=1

BtsY RG,s + ΛtW
′ = Ht Rξ ,t , ΛtU

′ = 0, Λth′ ≥ 0,

Yt RG,t = ΓtW ′, ΓtU ′ = 0, Γth′ ≥ 0,
ee�

1 − Yt RG,t = ΘtW ′, ΘtU ′ = 0, Θth′ ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
t=1, . . . , T,

(4.7)
where M ′ ∈ R

k′×k′
, M ′ = Eξ ′(ξ ′ξ ′�). Once more, we emphasize that Problem (4.7)

is the exact reformulation of Problem (4.6). Therefore, the solution of Problem (4.7)
achieves the best binary decision rule associated with G(·) in (2.4b) at the cost of the
exponential growth of its size with respect to the description of Ξ and the complexity
of the binary decision rules (4.2). The exponential growth in the time horizon T is
implicit through the description of Ξ and the structure of the binary decision rules.
One can mitigate this exponential growth by considering simplified structures of Ξ

and G(·), following similar guidelines as those discussed in Sect. 2.3.

5 Computational results

In this section, we apply the proposed binary decision rules to a multistage inventory
control problem and to a multistage knapsack problem. In both problems, the structure
of the binary decision rules is constructed using G(·) defined in (2.22), where the
breakpoints βi,1, . . . , βi,r are placed equidistantly within the marginal support of each
random parameter ξi . To improve the scalability of the solution method, we further
restrict the structure of the binary decisions rules to be
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y(ξ) = YG(ξ), Y ∈ {−1, 0, 1}q×g,

0 ≤ YG(ξ) ≤ e,

}
∀ξ ∈ Ξ. (5.1)

As shown in Proposition 6, for problem instances where G(·) and Ξ are defined in
(2.22) and (2.21), respectively, this restriction does not introduce an additional conser-
vatism. All of our numerical results are carried out using the IBM ILOG CPLEX 12.5
optimization package on a Intel Core i5 − 3570 CPU at 3.40GHz machine with 8GB
RAM [26].

5.1 Multistage inventory control

In this case study, we consider a single item inventory control problem where the
ordering decisions are discrete. This problem can be formulated as an instance of the
multistage adaptive optimization problem with fixed-recourse, and can be described
as follows. At the beginning of each time period t ∈ T := {2, . . . , T }, the decision
maker observes the product demand ξt that needs to be satisfied robustly. This demand
can be served in two ways: (i) by pre-ordering at stage 1 a maximum of N lots, each
delivering a fixed quantity qz at the beginning of period t , for a unit cost of cz ; (ii)
or by placing an order for a maximum of N lots, each delivering immediately a
fixed quantity qy , for a unit cost of cy , with cz < cy . For each lot n = 1, . . . , N ,
the pre-ordering binary decisions delivered at stage t are denoted by zn,t ∈ {0, 1},
and the recourse binary ordering decisions are denoted by yn,t (·) ∈ Bkt ,1. If the
ordered quantity is greater than the demand, the excess units are stored in a warehouse,
incurring a unit holding cost ch , and can be used to serve future demand. The level of
available inventory at each period is given by It (·) ∈ Rkt ,1. In addition, the cumulative
volume of pre-orders

∑t
s=1

∑N
n=1 zn,s must not exceed the ordering budget B tot,t . The

decision maker wishes to determine the orders zn,t and yn,t (·) that minimize the total
ordering and holding costs associated with the worst-case demand realization over
the planning horizon T . The problem can be formulated as the following multistage
adaptive optimization problem.

minimize max
ξ∈Ξ

(∑
t∈T

N∑
n=1

cz qzzn,t + cy qy yn,t (ξ
t ) + ch It (ξ

t)

)

subject to It (·) ∈ Rkt ,1,

zn,t ∈ {0, 1}, yn,t (·) ∈ Bkt ,1, ∀n = 1, . . . , N ,

It (ξ
t) = It−1(ξ

t−1) +
N∑

n=1

qzzn,t + qy yn,t (ξ
t ) − ξt ,

It (ξ
t) ≥ 0,

t∑
s=1

N∑
n=1

qzzn,s ≤ Btot,t ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀t ∈ T , ∀ξ ∈ Ξ.

(5.2)
The uncertainty set Ξ is given by,

Ξ :=
{
ξ ∈ R

T : ξ1 = 1, l ≤ ξ ≤ u
}

.

123



422 D. Bertsimas, A. Georghiou

Table 2 Comparison of average improvement of adaptive versus static binary decision rules using the

performancemeasure (Non-Adapt.−Adapt.)
Non-Adapt. , (top), and average solution time of binary decision rules (bottom)

Global optimality (%) 1% optimality (%) 5% optimality (%)

r = 1 r = 5 r = 9 r = 1 r = 5 r = 9 r = 1 r = 5 r = 9

Average objective value improvements, N = 2

T = 10 15 17 17 14 17 17 14 16 16

T = 15 16 18 18 16 18 18 16 17 17

T = 20 18 19 20 18 19 20 17 18 19

Global optimality (s) 1% optimality (s) 5% optimality (s)

r = 1 r = 5 r = 9 r = 1 r = 5 r = 9 r = 1 r = 5 r = 9

Average solution time, N = 2

T = 10 <1 4 42 <1 4 15 <1 1 8

T = 15 <1 166 983 <1 16 83 <1 3 10

T = 20 1 688 5580 <1 46 710 <1 9 92

We emphasize that since we are interested in minimizing the total costs associ-
ated with the worst-case demand realization, the model does not require to specify
a distribution for our uncertainty demand. Moreover, notice that the real-valued
inventory decision It (ξ t) can be eliminated from formulation (5.2) by substituting

It (ξ t) = I1 +∑t
s=1

(∑N
i=1 qzzn,s + qy yn,s(ξ

s) − ξs

)
in both the objective and con-

straints, thus eliminating the need to further approximate It (·) using decision rules.
For our computational experimentswe randomly generated 30 instances of Problem

(5.2). The parameters are randomly chosen using a uniform distribution from the
following sets: Advanced and instant ordering costs are chosen from cz ∈ [0, 5] and
cy ∈ [0, 10], respectively, such that cz < cy , and holding costs are elements of
ch ∈ [0, 5]. The bounds for each random parameter are chosen from li ∈ [0, 5] and
ui ∈ [10, 15] for i = 2, . . . , T . The cumulative ordering budget equals to Btot,t =
10(t − 1), for t = 2, . . . , T . We also assume that qz = qy = 15/N , and the initial
inventory level equals to zero, i.e., I1 = 0.

In the first test series, we compared the performance of the binary decision rules
versus the non-adaptive binary decisions for the randomly generated instances. We
consider binary decision rules for yn,t (·) that have r ∈ {1, 5, 9} breakpoints in each
direction ξi , and planning horizons T ∈ {10, 15, 20}.

Moreover, we consider three different termination criteria for the mixed-integer
linear optimization problems: (i) global optimality, (ii) 1%optimality and (iii) 5%opti-
mality. All non-adaptive problems were solved to global optimality. Table 2 presents
the results from the case where N = 2, in terms of the average improvement of the
binary decision rules versus the static binary decisions. The improvement is defined
as quantity (Non-Adapt.−Adapt.)

Non-Adapt. , where Non-Adapt. and Adapt. are the objective val-
ues of the non-adaptive and adaptive binary decision rule problems, respectively. The
first observation is the significant improvement over the non-adaptive decisions, and
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Table 3 Comparison between the binary decision rules discussed in Bertsimas and Georghiou [10]
(Design), given by (1.2) with P = 1, and the proposed decision rules (Adaptive)

Average performance (%) Solution time (s)

r = 0 r = 1 r = 5 r = 9 Design r = 0 r = 1 r = 5 r = 9

Binary decision rule structure (1.2) v.s. (2.4), N = 2

T = 2 19 3 2 1 <1 <1 <1 <1 <1

T = 4 29 16 12 10 3 <1 <1 <1 <1

T = 6 52 34 27 26 607 <1 <1 <1 <1

T = 8 60 40 29 28 1628 <1 <1 1 1

T = 10 47 38 31 30 16,613 <1 <1 1 5

The performance is defined as quantity (Adapt.−Design)
Design . The proposed decision rule problems have great

scalability properties but do not perform as well compared to binary decision rules of type (1.2)

the improvement in solution quality as the complexity of the binary decision rules
increase. As expected, solving the problems to global optimality achieves a slightly
better objective value compared to the relaxed termination criteria cases. Neverthe-
less, the computational burden is substantially larger, rendering the decision rules
impractical for T > 20 and r > 9. Using the problem instances of this test series,
we also compared the binary decision rule structure given in (2.4a) and (5.1), i.e., the
decision variable in the mixed-integer linear optimization problems were Y ∈ Z

q×g

and Y ∈ {−1, 0, 1}q×g , respectively. In both cases, the optimal solution was identical,
but the solution time for the case Y ∈ Z

q×g was substantially longer, rendering the
decision rules impractical for T > 15 and r > 5.

In our second test series, we investigate the relative performance between the
proposed decision rules and the binary decision rules discussed in Bertsimas and
Georghiou [10]. In particular, we used decision rules of type (1.2) with P = 1, and
the corresponding decision rule problem was solved using the semi-infinite proce-
dure defined by Algorithm 2 with parameters δ = 0.01, β = 10−4, ε̂ = 0.01 and
β̂ = 10−4, see [10, Section 2.3] for more details. The termination criteria for all
mixed-integer linear optimization problems was fixed to 5%. The results are pre-
sented Table 3, and constructed using the randomly generated instances for the cases
where N = 2, T ∈ {2, . . . , 10} and r ∈ {0, 1, 5, 9}. The performance is defined
as quantity (Adapt.−Design)

Design , where Adapt. and Design are the objective values of the
proposed binary decision rule structure and the decision rule structure given by (1.2),
respectively. As expected, structure (1.2) is much more flexible compared to the pro-
posed structure, producing high quality designs. This is the case as the discontinuity
of the binary decision rule is decided endogenously by the optimization problem.
However, this flexibility comes at a high computational cost, rendering decision rules
(1.2) impractical for problem instances with T > 10. On the other hand, the proposed
decision rules are highly scalable, with all instances being solved in under 5 S.

The quality of the proposed decision rules can be further improved by enriching the
choice ofG(·).Usingdefinition (2.35), one can introduce additional piecewise constant
components along directionsαi ∈ R

k that are not alignedwith the coordinate axis of ξ .
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Table 4 Improvement in the
proposed design of decision
rules by using the flexible design
of (1.2)

T = 2 T = 4

Enriching the decision rule structure

“Enriched” “Simple” “Enriched” “Simple”

1.4% 7.1% 9.8% 14.5%

If the choice of αi cannot be motivated by the structure of the problem, then one can
envision a hybridmethod that first solves a variant of Problem (5.2)with a short horizon
using the binary decision rules in [10], and extracting αi by analyzing the piecewise
structure of the decision rules. Subsequently, Problem (5.2) with a longer horizon is
solved using the enriched basis functions. To demonstrate this heuristic on a small
scale example, we solve instances of Problem (5.2) with N = 1, qz = 7, qy = 10
and T = 3 using the binary decision rules given in (1.2) with P = 1. For each instance,
we denote the optimal second and third stage decisions by

y∗
2 (ξ2) =

{
1, α∗

2,2ξ2 ≥ β∗
2 ,

0, otherwise,

y∗
3 (ξ2, ξ3) =

{
1, α∗

3,2ξ2 + α∗
3,3ξ3 ≥ β∗

3 ,

0, otherwise,

and use the optimal (α∗
2, β

∗
2 ) and (α∗

3, β
∗
3 ) to create additional basis functions G(·) as

described in equations (2.34) and (2.35). In addition to the single break point defined by
the values β∗

2 and β∗
3 , 5 uniformly placed breakpoints are added along the directions

α∗
2 and α∗

3 enriching further the basis G(ξ). We then proceed to resolve the same
instances with T = 3 and T = 4 with the proposed “enriched” decision rules and the
“simpler” decision rules used in the previous experiment with r = 10. For problem
instances with T = 4, we use the same data as the corresponding instance of T = 3,
plus additional data to form the fourth stage. We compare the performance of the two
approximations to the decision rule structure given by (1.2) using again the metric
(Adapt.−Design)

Design . The average results over 30 instances are presented in Table 4. We
see that for T = 3, the performance of the “enriched” structure almost matches the
performance of the flexible decision rules (1.2), while for T = 4, since we have only
utilized the optimal policy from the second and third stage, the solution deteriorates but
still performs better compared to the “simpler” decision rules. We note that for T = 3,
the “enriched” structure does not exactly match the performance of the decision rule
structure given by (1.2), since for the latter approximation the constraints are satisfied
with high probability (1 − δ), while for the proposed decision rules the constraints
are robustly satisfied. Nevertheless, we can still utilize the additional information
and improve upon the “simpler” decision rule structure. Of course, the knowledge of
finding good choices of αi comes with the price of solving computationally expensive
problems and can restrict the applicability of this heuristic to small problem instances.

In our fourth test series, we investigate the scalability properties of the proposed
binary decision rules and their relative performance. In this test series, the termination
criterion of themixed-integer linear optimization problemswasfixed to 5%.The results
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Fig. 5 Comparison of average performance of adaptive versus static binary decision rules for N ∈ {2, 3, 4}
and r ∈ {1, 3, 5} using the performance measure (Non-Adapt.−Adapt.)

Non-Adapt.

Table 5 Average solution time for N ∈ {2, 3, 4} and r ∈ {1, 3, 5}
N = 2 (s) N = 3 (s) N = 4 (s)

r = 1 r = 3 r = 5 r = 1 r = 3 r = 5 r = 1 r = 3 r = 5

Average solution time

T = 10 <1 <1 1 <1 <1 2 <1 <1 4

T = 20 <1 1 9 <1 2 48 <1 5 57

T = 30 <1 5 63 <1 7 224 <1 31 380

T = 40 <1 9 114 1 12 453 1 95 4615

T = 50 1 12 225 1 36 1951 1 357 19,298

are presented in Fig. 5 and Table 5, and constructed using the randomly generated
instances for the cases where N ∈ {2, 3, 4}, T ∈ {10, . . . , 50} and r ∈ {1, 3, 5}. As
expected, solution quality increases as the decision rules become more flexible. It is
interesting to see that these improvements saturate for r > 3, getting diminishing
returns for the computational effort required.

5.2 Multistage knapsack problem

In this case study,we consider amultistage knapsackproblem,which canbe formulated
as an instance of the multistage adaptive optimization problem with random recourse
and binary recourse decisions. In the classic one-stage knapsack problem, the decision
maker is given N items, each weighing wn, n = 1, . . . , N , and a knapsack that can
carry a maximum weight w. The decision maker wants to maximize the number
of items that fit into the knapsack, by choosing binary decisions yn ∈ {0, 1} for
each item n, while keeping the total weight of the items in the knapsack

∑N
n=1 wn yn

less than w. In the multistage variant of the problem, at the beginning of each time
period t ∈ T := {1, . . . , T }, the decision maker is given N items, each weighing
wn,t (ξt ), n = 1, . . . , N , and an empty knapsackwith capacityw. Theweightswn,t (ξt )

are assume to be linear functions of the random parameter ξt that realizes at stage t .
Upon observing the weight of each item, the decision maker then decides the subset

123



426 D. Bertsimas, A. Georghiou

of the N items that can fit in the knapsack. The items left behind can be taken at later
stages. We denote by yn,t,s(·) ∈ Bks ,1 the binary decision corresponding to item with
weight wn,t (ξt ), taking value 1 if the item is fitted into the knapsack at stage s, s ≥ t ,
and zero otherwise. The decision maker wishes to maximize the expected number of
items that can fit into the knapsacks over the planning horizon T by determining the
collection of items yn,t,s(·). The problemcan be formulated as the followingmultistage
optimization problem with random recourse.

maximize Eξ

(
N∑

n=1

∑
t∈T

T∑
s=t

yn,t,s(ξ
s)

)

subject to yn,t,s(·) ∈ Bks ,1, s = 1 . . . , t, n = 1 . . . , N ,
t∑

s=1

N∑
n=1

wn,s(ξs) yn,s,t (ξ
t ) ≤ w,

T∑
s=t

yn,t,s(ξ
s) ≤ 1, n = 1 . . . , N ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

∀t ∈ T , ∀ξ ∈ Ξ.

(5.3)
Here, the second set of constraints ensure that at each stage t , the total weight of the
knapsack is below its capacity w, while the last set of constraints ensure that an item
can only be carried in the knapsack only once over the time horizon. The random
vector ξ follows a beta distribution, Beta(α, β), and the uncertainty set Ξ is given by,

Ξ :=
{
ξ ∈ R

T : ξ1 = 1, 0 ≤ ξ ≤ e
}

.

For our computational experimentswe randomly generated 30 instances of Problem
(5.3). The parameters are randomly chosen using a uniform distribution from the
following sets: The weight of item n at stage t is given by wn,t (ξt ) = ŵn,tξt where
ŵn,t ∈ [0.5, 1], and the parameters of the beta distribution are chosen from α ∈ (0, 5]
and β ∈ (0, 5]. The capacity of the knapsack is set to w = N/2.

In the first test series, we compared the performance of the binary decision rules
versus the non-adaptive binary decisions for the randomly generated instances. We
consider binary decision rules that have r = {1, 2, 3} breakpoints in each direction ξi ,
for problem instances with N ∈ {2, 3, 4} and planning horizons T ∈ {3, . . . , 15}. The
termination criterion of the mixed-integer linear optimization problems was fixed to
5%.Figure 6depicts the average improvement in objective value of the binary decisions
rules versus the static binary decisions. As before, the improvement in objective value
is defined as quantity (Non-Adapt.−Adapt.)

Non-Adapt. . The results show a substantial improvement
in solution quality for all problem instances N ∈ {2, 3, 4}, with the most flexible
decision rule structure achieving the best results. For the time horizon and complexity
of the binary decision rules considered, all problem instances were solved within 20
minutes. The solution time for instances with T > 15 and r > 3 was substantially
longer.

In the second test series, we improve the scalability of the solution method by
restricting the information available to the binary decision rules. To this end, we define
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Fig. 6 Comparison of average performance of adaptive versus static binary decision rules for N ∈ {2, 3, 4}
and r ∈ {1, 2, 3}, using the performance measure (Non-Adapt.−Adapt.)

Non-Adapt. . All problems were solved within 20
min

Table 6 Comparison of average
performance and average
computational times for binary
decision rules with full and
partial information structure,
using the performance measure
(Non-Adapt.−Adapt.)

Non-Adapt.

T Full information (%) Partial information (%)

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

Average objective value improvements, N = 4

T = 5 32.5 34.8 35.7 30.5 32.5 34.2

T = 10 28.3 32.0 32.1 27.9 30.3 31.5

T = 15 28.9 31.5 32.6 26.9 30.1 31.2

T = 20 28.3 n/a n/a 27.6 30.9 31.7

T = 25 26.8 n/a n/a 26.0 31.0 31.9

Full information (s) Partial information (s)

Average solution time, N = 4

T = 5 <1 1 1 <1 <1 1

T = 10 4 7 25 2 4 6

T = 15 27 52 364 13 42 28

T = 20 76 n/a n/a 34 169 431

T = 25 396 n/a n/a 162 449 11,349

ηs,t = (ξs, ξt )
�, and we restrict the recourse decisions yn,t,s(ξ

s) to have structure
yn,t,s(ηs,t ) for all n = 1, . . . , N , s = t, . . . , T and t = 1 . . . , T . The number of
integer decision variables needed to approximate yn,t,s(ξ

s) using the binary decision
rule structure (5.1) and (2.22) is s(r + 1), while for yn,t,s(ηs,t ) the number of integer
decision variables required is 2(r + 1). We will refer to ηs,t = (ξs, ξt )

� as the partial
information available to the decision rule at stage s. Table 6 compares the solution
quality and computation time, of the full information and partial information structures
for problem instances with N = 4, r ∈ {1, 2, 3} and T ∈ {5, . . . , 25}. The solution
quality of the full information structure is slightly better, but the solution method
suffers with respect to scalability. On the other hand, using the partial information
structure we can solve much bigger problem instances within very reasonable amount
of time. We note that the problem instance with N = 4 and T = 25 involves a total
of 1300 binary decision rules.
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6 Conclusions

In this paper, we present linearly parameterised binary decision rule structures that
can be used in conjunction with real-valued decision rules appearing in the literature,
for solving multistage adaptive mixed-integer optimization problems. We provide a
systematic way to reformulate the binary decision rule problem into a finite dimen-
sional mixed-integer linear optimization problem, and we identify instances where the
size of this problem grows polynomially with respect to the input data. The theory
presented covers both fixed-recourse and random-recourse problems.

Particular emphasis of the numerical section is put on the comparison between the
proposed decision rule structures and the decision rules presented in [10]. We show
that decision rules parameterized as in (1.2) can provide better policy designs at the
expense of scalability. This is the case as both the structure and shape of the decision
rule is decided endogenously through the solution of a sequence ofmixed-integer linear
optimization problems. This necessitates the repeated use of non-convex optimization
algorithms in order to achieve robust feasibility, reducing the scope of these decision
rules to relatively small problem instances (horizons ≤ 10). In contrast, the proposed
decision rule structures are highly scalable (horizons≤ 50,∼5min), since the structure
of the decision rule is dictated by the a priori choice of the non-linear operator G(·),
and only the shape of the decision rule is decided through the solution of a single
mixed-integer linear optimization problem. We show that the proposed decision rules
can provide significant improvements compared to non-adaptive policies, making the
method particularly attractive for practical, large scale problems.

Acknowledgements We like to thank Dr. WolframWiesemann for very helpful discussions, and the Asso-
ciate Editor and referees of the paper for their suggestions which improved the paper significantly.

7 Appendix: Technical proofs

In this section, we provide the proof for Theorem 1. To do this, we need the following
auxiliary results given in Lemmas 1, 2 and 3. Lemma 1 gives the complexity of the
epsilon integer feasibility problem, which will be used in Lemmas 2 and 3 to prove
that checking feasibility of a semi-infinite constraint involving indicator functions is
NP-hard.

Lemma 1 (Epsilon integer feasibility problem) The following decision problem is
NP-hard:

Instance. W ∈ R
l×k , h ∈ R

l and N ∈ Z+ with N < k and

0 < ε < min

⎧⎨
⎩ min
i∈{1,...,l}{(

k∑
j=1

|Wi, j |)−1}, 1
k , 1

2

⎫⎬
⎭ that satisfy:

(A1) The set Ξ = {ξ ∈ [0, 1]k : W ξ ≥ h,
∑k

i=1 ξi = N } spans Rk ;
(A2) For each i = 1, . . . , k, the set {ξi ∈ [0, 1] : W ξ ≥ h,

∑k
i=1 ξi = N } ⊇ [1 − ε, 1].

Question. Is there ξ ∈ {[0, ε], [1 − ε, 1]}k such that W ξ ≥ h,
∑k

i=1 ξi = N?
(7.1)

The condition ξ ∈ {[0, ε], [1 − ε, 1]}k implies that each component of ξ can take
values either in the set [0, ε] or in the set [1 − ε, 1]. Note that (A1) is a standard
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assumption, while (A2) is non-restrictive since if the projection of a component of ξ

is strictly less than 1− ε, (or strictly greater than ε) then that component of ξ can be a
priori fixed to an element of [0, ε] (or [1− ε]), or in the case where ε < ξi < 1− ε the
dimension ofΞ can be reduced without changing the problem structure. Assumptions
(A1) and (A2) are not necessary for the proofs of Lemmas 1, 2 and 3, but will be used
in the proof of Theorem 1.

Proof The proof is a slight variant of [25, Lemma 2] and references within. ��

In particular, the work of Hanasusanto et al. [25] shows that the epsilon integer feasi-
bility problem is in fact equivalent to the integer feasibility problem which is known
to be NP-hard, see [28]. More precisely, they prove that the decision problem (7.1)
has an affirmative answer if and only if there exists a vector χ ∈ {0, 1}k which gives
an affirmative answer to the corresponding integer feasibility problem, with χi = 1 if
ξi > 1 − ε, and χi = 0 otherwise.

Lemma 2 The following decision problem is NP-hard:

Instance. W ∈ R
l×k , h ∈ R

l and N ∈ Z+ with N < k and

0 < ε < min

⎧⎨
⎩ min
i∈{1,...,l}{(

k∑
j=1

|Wi, j |)−1}, 1
k , 1

2

⎫⎬
⎭ that satisfy:

(A1) The set Ξ = {ξ ∈ [0, 1]k : W ξ ≥ h,
∑k

i=1 ξi = N } spans Rk ;
(A2) For each i = 1, . . . , k, the set {ξi ∈ [0, 1] : W ξ ≥ h,

∑k
i=1 ξi = N } ⊇ [1 − ε, 1].

Question. Is there ξ ∈ [0, 1]k such that W ξ ≥ h,
∑k

i=1 ξi = N ,
∑k

i=1 1
(
ξi ≥ 1 − ε

k

) = N?
(7.2)

Proof Wewill prove the assertion in two steps. In the first step, assume that the decision
problem (7.1) has an affirmative answer, i.e., there exists a ξ ∈ {[0, ε], [1 − ε, 1]}k
that satisfies (7.1). Then, by [25, Lemma 2] there exists χ ∈ {0, 1}k with χi = 1 if
ξi > 1 − ε, and χi = 0 otherwise, that satisfies constraints Wχ ≥ h,

∑k
i=1 χi = N .

It is easy to see that this vector χ will also satisfy
∑k

i=1 1
(
χi ≥ 1 − ε

k

) = N due
to the fact that N < k, and therefore decision problem (7.2) will have an affirmative
answer. For the second step, assume that the decision problem (7.2) has an affirmative
answer. We now prove by contradiction that a vector ξ ∈ [0, 1]k satisfying (7.2) must
also satisfy (7.1). Assume that there exists ξ with ε < ξ1 < 1 − ε that satisfies
W ξ ≥ h,

∑k
i=1 ξi = N ,

∑k
i=1 1

(
ξi ≥ 1 − ε

k

) = N . Since ε < ξ1 < 1 − ε, then∑k
i=2 ξi < N − ε and as a result

∑k
i=2 1(ξi ≥ 1 − ε/k) < N , which contradicts

the assumption that
∑k

i=1 1
(
ξi ≥ 1 − ε

k

) = N . The latter follows since if distributed
evenly, the value each ξi can take is ξi = 1 − ε

N , for i = 2, . . . , N + 1, and since
N < k it implies that 1

N (N − ε) = 1 − ε
N < 1 − ε

k .
Therefore, we conclude that ξ ∈ {[0, ε], [1− ε, 1]}k . Together, the two steps allow

us to conclude that (7.2) is NP-hard. ��

The following lemma provides the key ingredient for proving Theorem 1.
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Lemma 3 The following decision problem is NP-hard:

Instance. A convex polytope Ξ ⊂ R
kwith W ∈ R

l×k , h ∈ R
l , N ∈ Z+ with N < k, and

0 < ε < min

⎧
⎨
⎩ min
i∈{1,...,l}{(

k∑
j=1

|Wi, j |)−1}, 1
k , 1

2

⎫
⎬
⎭ that satisfy:

(A1) The set Ξ = {ξ ∈ [0, 1]k : W ξ ≥ h,
∑k

i=1 ξi = N } spans Rk ;
(A2) For each i = 1, . . . , k, the set {ξi ∈ [0, 1] : W ξ ≥ h,

∑k
i=1 ξi = N } ⊇ [1 − ε, 1].

Question. Do all ξ ∈ Ξ satisfy
∑k

i=1 1
(
ξi ≥ 1 − ε

k

) ≤ N − 1?
(7.3)

Proof Notice that the decision problem (7.3) is the negation of the decision problem
(7.2). In other words, the decision problem (7.3) evaluates to true if there is no ξ such
that

ξ ∈ [0, 1]k such that W ξ ≥ h,

k∑
i=1

ξi = N ,

k∑
i=1

1
(
ξi ≥ 1 − ε

k

)
= N ,

which corresponds to checking if decision problem (7.2) holds. Notice that there is
no ξ such that

∑k
i=1 1

(
ξi ≥ 1 − ε

k

)
> N . This is the case since

∑k
i=1 ξi = N and

N < k, implying that N − N (1− ε/k) = Nε/k < 1. The reverse statement holds in
a similar manner. ��

We now have all the ingredients to prove Theorem 1.

Proof of Theorem 1 Let Ξ be a convex polytope given by

Ξ :=
{

ξ ∈ [0, 1]k : ξ1 = 1, W ξ ≥ h,

k∑
i=2

ξi = N

}
, (7.4)

with N ∈ Z+, N < k − 1, and the choice of W and h are such that Ξ spans Rk and
the projection of Ξ on each component ξi is a superset of [1− ε, 1] for i = 2, . . . , k,
with fixed ε ∈ (0,min{mini∈{1,...,l}{(∑k

j=1 |Wi, j |)−1}, 1
k ,

1
2 }). In other words, the set

Ξ satisfies (A1) and (A2) in the decision problem (7.3).
Given the above instance, we can construct the projection of Ξ on each component

ξi , i.e, for each i = 2, . . . , k, there exists li ∈ [0, 1− ε] such that {ξi ∈ [0, 1] : W ξ ≥
h,
∑k

i=1 ξi = N } = [li , 1]. Now, let αi = ei and βi = 1 − ε
k , for i = 2, . . . , k in the

description of G(·) in (2.4b). By construction, the components of G(ξ) are linearly
independent for all ξ ∈ Ξ , i.e,

v�G(ξ) = 0, ∀ξ ∈ Ξ �⇒ v = 0.

This is the case since each component ofG(ξ) is non-constant on disjoint subsets ofRk

and each of these subsets has a non-empty intersection with Ξ , with only G1(ξ) = 1
being constant for all ξ ∈ Ξ . This is satisfied by the construction of Ξ which is
a convex set, spans Rk and the projection of Ξ on each component ξi is [li , 1] for
i = 2, . . . , k, with li ≤ 1 − ε < 1 − ε

k < 1.
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Fig. 7 Visualization of the function Gi (ξ) = 1
(
ξi ≥ 1 − ε

k

)
defined by the choice of αi = ei and

βi = 1 − ε
k in the description of G(·) in (2.4b), together with the visualization of the second and third

constraints of Problem (7.5) which create the convex hull of 1
(
ξi ≥ 1 − ε

k

)
on [li , 1]

We define the following feasibility problem:

minimize 0
subject to yi ∈ R

k , ∀i = 2, . . . , k,
0 ≤ y�

i G(ξ) ≤ 1, ∀i = 2, . . . , k,
kξi
ε

+ 1 − k
ε

≤ y�
i G(ξ) ≤ kξi

k(1−li )−ε
− kli

k(1−li )−ε
, ∀i = 2, . . . , k,

k∑
i=2

y�
i G(ξ) ≤ N − 1,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀ξ ∈ Ξ.
(7.5)

It is easy to see that for each i = 2, . . . , k, a feasible vector yi in the second and
third constraints satisfies ei ≤ yi ≤ ei + vi , for some vi ∈ R

k with vi,i = 0. In
particular, the solution yi = ei for each i = 2, . . . , k is feasible in the second and
third constraint. This is the case since for each i , the second and third constraint create
the convex hull of function 1

(
ξi ≥ 1 − ε

k

)
on ξi ∈ [li , 1], see Fig. 7.

We will also show that for the smallest N for which the last constraint is feasible,
the only feasible solution is yi = ei for all i = 2, . . . , k. We will show this by
contradiction. Assume that for each i = 2, . . . , k, there exist non-zero vectors vi ∈ R

k

such that yi = ei + vi is feasible. Since we have the smallest N , with N < k − 1,
constraint

k∑
i=2

(ei + vi )
�G(ξ) ≤ N − 1, ∀ξ ∈ Ξ,

implies that v�
i G(ξ) = 0 for all ξ ∈ Ξ and i = 2, . . . , k. This contradicts the fact that

the components of the components of G(ξ) are linearly independent for all ξ ∈ Ξ .
Therefore, we conclude that if Problem (7.5) is feasible, then yi = ei for all

i = 2, . . . , k is a feasible solution that satisfies the last constraint, and in addition, if
constraint

∑k
i=2 1

(
ξi ≥ 1 − ε

k

) ≤ N − 1 is feasible, then Problem (7.5) is feasible,
i.e.,
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k∑
i=2

1
(
ξi ≥ 1 − ε

k

)
≤ N − 1, ∀ξ ∈ Ξ ⇐⇒ Problem (7.5) is feasible.

Hence, Lemma 3 implies that checking the feasibility of Problem (7.5) is NP-hard.
Since the admissible feasible solutions are integers, i.e., yi ∈ Z

k for all i = 2, . . . , k,
Problem (7.5) can be reduced to an instance of Problem (2.10). Therefore,

k∑
i=1

1(ξi ≥ 1) ≤ N − 1, ∀ξ ∈ Ξ ⇐⇒ Problem (2.10) is feasible,

⇐⇒
Propositions 1&2

Problem (2.14) is feasible.

Lemma 3 implies that Problems (2.10) and (2.14) are NP-hard, even when Y ∈ Z
k×g

is relaxed to Y ∈ R
k×g . ��
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